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Preface

From 18 to 20 October 2004, a conference “Singularities and Computer Al-

gebra” was held at the University of Kaiserslautern on the occasion of Gert-
Martin Greuel’s 60th birthday. It was attended by 70 participants from Eu-
rope, Israel, Japan, Canada and the U.S.A. We were particularly happy that
Greuel’s teacher, Egbert Brieskorn, was among them.

Most of the participants have been influenced by Greuel’s work on sin-
gularities and their computational aspects over the last 30 years. Among
them, one could find colleagues and friends from the early years in Göttingen
and Bonn, but also former and present diploma and Ph.D. students of Gert-
Martin Greuel at Kaiserslautern. In particular, each of the invited speakers
could look retrospectively at cooperating in one way or another with Greuel.

The papers of this volume concern ten of the invited lectures, supple-
mented by four articles which are written by participants of the conference
and focus on computational aspects. Most of the contributions are intended
to give an overview on a particular aspect of singularities. They describe the
development of important areas of singularity theory over the past years and
they discuss open questions.

In the lead text, we include a list of the invited lectures and a list of the
participants as well as a picture of the septic with 99 nodes found by Oliver
Labs and Duco van Straten, which has acted as a logo for the conference.
Further, we include an article focussing on Aspects of Gert-Martin Greuel’s

Mathematical Work.
We would like to thank all the people who have contributed to the sucess

of the conference and to this volume.

Christoph Lossen and Gerhard Pfister

(Organizers of the Conference)
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A septic surface S in P3(C) with 99 real nodes. It was discovered in

2004 by O. Labs and D. van Straten using Singular experiments over

small finite fields of prime order. If α ∈ C satisfies 7α3 + 7α + 1 = 0,
a defining equation for S over Q(α) is the following:

(z + a5w)
(

(z + w)(x2 + y2) + a1z
3 + a2z

2w + a3zw2 + a4w
3

)2

−x7 + 21x5y2
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− 7z
(

x2 + y2
)3

+ 56z3
(

x2 + y2
)2

−112z5
(

x2 + y2
)

+ 64z7 ,

where
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7
α2
−

384

49
α− 8

7
, a2 := −32

7
α2 + 24

49
α− 4,

a3 := −4α2 + 24

49
α− 4, a4 := −8

7
α2 + 8

49
α− 8

7
,

a5 := 49α2
− 7α + 50.
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Aspects of Gert-Martin Greuel’s

Mathematical Work

Christoph Lossen Gerhard Pfister

This article emanates from the opening speech of the conference “Sin-

gularities and Computer Algebra” which took place on October 18–20,
2004 on the occasion of Gert-Martin Greuel’s 60th birthday. When
preparing the speech, we realized soon that it is impossible to cover
in such a speech Gert-Martin’s complete work which is documented in
more than eighty publications. Not to mention Gert-Martin’s organi-
sational work for the mathematical community.

We decided to illuminate only some cornerstones of Gert-Martin’s
mathematical work: his Ph.D.-Thesis in 1973, his Habilitationsschrift
in 1979, the Singular project, the work on moduli spaces, and the
work on equisingular families.

Ph.D.-Thesis (1973).

In his Diploma Thesis, titled “Zur Picard-Lefschetz-Monodromie isolierter

Singularitäten von vollständigen Durchschnitten”, and his Ph.D.-Thesis, titled
“Der Gauß-Manin Zusammenhang isolierter Singularitäten von vollständigen

Durchschnitten”, G.-M. Greuel develops the theory of the Gauß-Manin con-
nection for isolated complete intersection singularities: Let f : (X, x)→ (S, 0)
be a map of germs with the following properties:

• X is an m-dimensional complete intersection,

• S is a k-dimensional complex manifold,

• f is flat,

• x ∈ X0 = f
−1(0) is an isolated singular point,

• the critical set C of f is of dimension k−1.

Then (X0, x) is an isolated complete intersection singular-
ity of dimension n := m− k. We introduce S ′ := S \D

f

and X
′ := X \ f

−1(D
f
), where D

f
= f(C) ⊂ S denotes the

discriminant of f .
0

x

t

f

S

X

X0 Xt
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By a result of Hamm (extending a result of Milnor), we may assume that the
restriction f : X ′

→ S
′ is a locally trivial differentiable fibre bundle whose

fibres are homotopy equivalent to a bouquet of n-spheres. The number of
spheres in the bouquet, which equals dimC H

n(X
t
, C), is called the Milnor

number of the complete intersection germ (X0, x) and denoted by µ(X0, x).
The fibration f : X ′

→ S
′ induces a vector bundle with fibre H

n(X
t
, C)

over t ∈ S ′. Its sheaf of holomorphic sections, Hn = R
n
f∗CX

′ ⊗CS′
O

S
′ , has

a canonical integrable connection ∇ : Hn
→H

n
⊗OS′

Ω1

S
′ , ω ⊗ f 7→ ω ⊗ df .

The monodromy of this connection is the Picard-Lefschetz monodromy of
f in x, ρC : π1(S

′
, t)→ Aut(Hn(X

t
, C)), induced by the action of π1(S

′
, t)

on Hn(X
t
, Z). Greuel’s main result is now the following theorem (extending

Brieskorn’s result for hypersurfaces):

Theorem . The connection ∇ on S ′ can be extended to a (meromorphic)

regular singular connection on S, the Gauß-Manin connection

∇
X/S

: Hn

DR
(X/S) −→ Hn

DR
(X/S)⊗ Ω1

S
(D

f
)

of coherent O
S
-modules, where Hn

DR
(X/S) is the hypercohomology Rn

f∗Ω
•
X/S

of the complex of relative holomorphic differential forms.

This result is already contained in his diploma thesis. An important ingredient
of the proof is a proof of the generalized de Rham lemma saying that, for each
holomorphic map h = (h1, . . . , ht

) : X → Ck, the morphism

Ωp

X/S

/

t
∑

i=1

dh
i
∧ Ωp−1

X/S
−→ Ωp+t

X/S
, [ω] 7−→ [dh1 ∧ . . . ∧ dh

t
∧ ω]

is injective for 0 ≤ p < codim
X

Sing(f, h), where (f, h) : X → S × Ck. Here,
X does not need to have an isolated singularity. The de Rham lemma was
later formulated by K. Saito in a more algebraic context, but the first proof
is due to Greuel [1]. Indeed, Greuel proves a much more general statement,
and the proof provides results which were recently used by Gusein-Zade and
Ebeling to compute indices of vector fields.

In his Ph.D. thesis [2], published in [4], Greuel proves that Hn

DR
(X/S) is

locally free for dim S ≤ 2 and that a different extension H′′′
DR

(corresponding
to Brieskorns H′′ is locally free for arbitrary S (of rank µ(X0, x)). Using these
results and applying the index theorem of Malgrange to the Gauß-Manin
connection, Greuel gets a purely algebraic formula for the Milnor number of
an isolated complete intersection singularity (X0, x) ⊂ (X, x) as above:

Theorem. The Milnor number µ(X0, x) has the following properties:

(1) µ(X0, x) = dimC Ωn

X0 ,x
/dΩn−1

X0,x
if n > 0, and µ(X0, x) = dimCOX0,x

− 1
if n = 0.
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In particular, the Milnor number depends only on X0 (and not on f).

(2) If dim S = 1, then µ(X0, x) + µ(X, x) = dimC Ωm

X/S,x
= dimCOX,x

/C ,

where C denotes the ideal of O
X,x

generated by the entries of the Jaco-

bian matrix ∂(g1, . . . , gr
, f)/∂x. Here g1, . . . , gr

are supposed to generate

the ideal of X in C{x} = C{x1, . . . , xm
}.

In particular, we can compute µ(X0, x) by recursion:

(3) If Xi
:= V (f1, . . . , fk−i

) ⊂ Cm and f
k−i+1 : X

i
→ S

i
= C, then

µ(X0, 0) =

k
∑

i=1

(−1)k−i dimC Ωn+i

Xi/Si,0
=

k
∑

i=1

(−1)k−i dimC C{x}
/

C
i
,

where Ci
denotes the ideal of C{x} generated by f1, . . . , fi−1 and the

i-minors of the Jacobian matrix ∂(f1, . . . , fi
)/∂x.

(4) If X0 = V (f1, . . . , fk
) ⊂ Cm is quasihomogeneous, then

µ(X0, 0) = dimC C{x}
/

(C
k

+ 〈f
k
〉) .
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Habilitationsschrift (1979).

Greuel’s Habilitationsschrift, which has the title “Kohomologische Methoden

in der Theorie isolierter Singularitäten”, consists of three parts:
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I. The Milnor number and deformations of complex curve singularities.

II. Deformation spezieller Kurvensingularitäten und eine Formel von De-

ligne.

III. Dualität in der lokalen Kohomologie isolierter Singularitäten.

Large Parts of the Habilitationsschrift were written during a one year stay
for research in France at IHES (Bures-sur Yvette) and at the mathematical
institute of the Université de Nice.

In the first part, which has been based on a joint work with R.O. Buch-
weitz (see [11]), again a Milnor number µ(C, 0) is the main object of inves-
tigation. This time for (C, 0) ⊂ (Cn

, 0) being an arbitrary reduced complex
curve singularity. Buchweitz and Greuel define this new invariant as

µ(C, 0) := dimC ω
C,0/dOC,0,

where ω
C,0 = Extn−1

OCn,0

(

O
C,0, Ω

n

Cn
,0

)

is the dualizing module of Grothendieck,
extending in this way the notion of the Milnor number of an isolated complete
intersection curve singularity, µ(C, 0) = dimC Ω1

C,0
/dO

C,0.
According to Greuel, the main results of Part I can be summarized by

saying that also the general notion of a Milnor number reflects the topological
nature of curve singularities:

“Obwohl µ für Kurvensingularitäten in Kodimension ≥ 2 keine

topologische Invariante ist, spiegelt sie doch im Wesentlichen

den topologischen Charakter der Singularität wider. Das ist der

gemeinsame Nenner der Hauptresultate des ersten Teils.”

More precisely, Buchweitz and Greuel obtain the following results:

Theorem (Generalized Milnor formula). If (C, 0) is a reduced complex

curve singularity with r branches, then

µ(C, 0) = 2δ(C, 0)− r + 1 ,

where δ(C, 0) = dimCOC,0
/O

C,0 for (C, 0)→ (C, 0) the normalization.

Theorem. Let f : C → D ⊂ C be a good representative of a flat family of

reduced curve singularities. Then, for all t ∈ D,

(1) The fibre C
t
is connected.

(2) µ(C0, 0)−
∑

x∈Ct

µ(C
t
, x) = dimC H

1(C
t
, C) .

(3) µ(C0, 0)−
∑

x∈Ct

µ(C
t
, x) ≥ δ(C0, 0)−

∑

x∈Ct

δ(C
t
, x) .
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(4) µ
t
:=
∑

x∈Ct

µ(C
t
, x) is constant in t iff all fibres C

t
are contractible.

Statement (2) shows that the Milnor number is again a measure for the van-
ishing cohomology.

Theorem (µ-constant is equivalent to topological triviality).
Let f : C → D ⊂ C be a good representative of a flat family of reduced curve

singularities with section σ : D → C such that C
t
\ {σ(t)} is smooth for all

t ∈ D. Then the following are equivalent:

(a) µ(C
t
, σ(t)) is constant for t ∈ D.

(b) δ(C
t
, σ(t)) and r(C

t
, σ(t)) are constant for t ∈ D.

(c) f : C → D is topologically trivial.

Theorem (Generalized Zariski discriminant criterion).
Let f : C → D ⊂ C be a sufficiently small representative of a flat deformation

of a reduced complete intersection curve singularity (C, 0). Then the following

are equivalent:

(a) There exists a finite mapping π = (π1, f) : (C , 0)→ (C×D, 0) such

that the multiplicity of the discriminant (with Fitting structure) along

{0} ×D is constant for t ∈ D and equal to

∑

x∈Ct

(

µ(C
t
, x) + mult(C

t
, x)− 1

)

, t 6= 0 .

(b) f : C → D admits a holomorphic section σ : D → C such that C
t

is

smooth outside {σ(t)}, and µ(C
t
, σ(t)) and mult(C

t
, σ(t)) are constant

in t.

Note that condition (b) is stronger than equisingularity, since for a complete
intersection in codimension ≥ 2 constant Milnor number does not imply con-
stant multiplicity.

Part II of the Habilitationsschrift deals with smoothable singularities: Let
(C, 0) ⊂ (Cn

, 0) be a reduced complex curve singularity, and let

(C, 0) �

�

i
//

��

(C , 0)

φ flat
��

{0} �

�

// (S, 0)

be the semiuniversal deformation. Then (C, 0) is called smoothable if there
exists a component E of (S, 0) such that the fibre C

t
over a general point
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t ∈ E is smooth. The component (E, 0) is then referred to as a smoothing

component for (C, 0).
Deligne’s formula (1973) plays an important role in the investigation of

smoothable singularities. It states that for a smoothable reduced complex
curve singularity (C, 0), each smoothing component has the dimension

e(C, 0) := 3δ(C, 0)− dimC Θ
/

Θ
︸ ︷︷ ︸

=: m1(C, 0)

,

where Θ = HomOC,0

(

Ω1

C,0
,O

C,0

)

, and Θ = HomO

(

n∗Ω
1

C,0
,O
)

for O = n∗OC,0
.

And, for each reduced curve singularity (C, 0), the codimension m1(C, 0) can
be computed as m1(C, 0) = r(C, 0) + dimC G

/

G, where G = Aut
(

O

/

I
)

for

some ideal I ⊂ O contained in the conductor, and G ⊂ G the stabilisator of
O

C,0/I.
The main goal in Part II of Greuel’s Habilitationsschrift (published in

[13]) is to extend Deligne’s Formula to not necessarily smoothable singularities
and to express it by means of invariants of (C, 0) that are easier to compute:

Theorem. (1) If (C, 0) is a quasihomogeneous complex curve singularity,

e(C, 0) = µ(C, 0) + t(C, 0)− 1 ,

where t(C, 0) = dimC(ω
C,0/mC,0ωC,0) is the Cohen-Macaulay type of

(C, 0).

(2) If (C, 0) is Gorenstein and irreducible, then

e(C, 0) ≤ µ(C, 0) ,

and equality holds iff (C, 0) is quasihomogeneous.

(3) For an arbitrary reduced complex curve singularity (C, 0),

e(C, 0) = µ(C, 0) + t(C, 0)− 1

+ dimC HomOC,0

(

Ω1

C,0
,O

C,0

)/

HomOC,0

(

O

/

O
C,0

)

− dimC HomOC,0

(

m
C,0,OC,0

)/

HomOC,0

(

O

/

O
C,0

)

.

The irreducibility assumption in (2) was later removed (see [17]). While
Deligne’s proof of the formula for the dimension of a smoothing component
was global, a local proof was given as an application of the main result in
[16].

Part III of the Habilitationsschrift (published in [12]) is devoted to the com-
parison of the Milnor and the Tjurina number of an isolated complete inter-
section singularity. The name “Tjurina number” for τ(X, 0) := dimC T

1

X,0
(for
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an arbitrary singularity (X, 0)) was coined by Greuel and introduced in that
paper. If (X, 0) is unobstructed (e.g., a complete intersection), then τ(X, 0)
equals the dimension of the base space of the semiuniversal deformation. Part
III contains the following result:

Theorem. Let (X, 0) be an isolated complete intersection singularity.

(1) If (X, 0) is quasihomogeneous, then µ(X, 0) = τ(X, 0).

(2) If the neighbourhood boundary of (X, 0) is a rational homology sphere

or if dim(X, 0) = 1, then µ(X, 0) ≥ τ(X, 0).

The last statement has been generalized by Looijenga and Steenbrink to ar-
bitrary complete intersection singularities of dimension ≥ 2.
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21. Simple Singularities in Positive Characteristic. Math. Z. 203, 339–354 (with
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The SINGULAR Project.

The birth of the Singular project can be dated back to about 1982, when
G.-M. Greuel and the second author tried to generalize K. Saito’s theorem
which states that, for a germ (X, 0) of an isolated hypersurface singularity,

the following conditions are equivalent:

(a) (X, 0) is quasi-homogeneous (that is, has a good C∗-action).

(b) µ(X, 0) = τ(X, 0).

(c) The Poincaré complex of (X, 0) is exact.

Trying to extend this theorem to complete intersection curve singularities,
they only succeeded in proving the equivalence of (a) and (b) (see [17]). They
expected that (b) and (c) are, indeed, not equivalent for general complete
intersection curve singularities. They succeeded in expressing the exactness
of the Poincaré complex as an equality of dimensions of certain O

X,0-modules.
In those days, however, there was no computer algebra system available which
could compute Milnor numbers, Tjurina numbers and the dimensions of the
differential modules in the Poincaré complex. To be able to compute these
numbers, such a system requires an implementation of T. Mora’s tangent cone
algorithm, a modification of Buchberger’s Gröbner basis algorithm designed
for computations over local rings.

Having implemented this algorithm, the expected counterexamples were
found by H. Schönemann and the second author in C.T.C. Wall’s list of
unimodal complete intersection curve singularities: consider

{xy + z
`−1 = xz + yz

2 + y
k−1 = 0}

for 4 ≤ ` ≤ k, 5 ≤ k.
Motivated by this success, Greuel and the second author tried to attack

Zariski’s famous multiplicity conjecture by searching for a counterexample.
Starting point was the following result of Greuel, confirming Zariski’s conjec-
ture for families of quasihomogeneous isolated singularities [18]:

Theorem. Let f ∈ C{x1, . . . , xn
} be such that the ideal 〈f〉 can be generated

by a semiquasihomogeneous polynomial, and let f
t
∈ C{x1, . . . , xn

, t} be a µ-

constant deformation of f , then the multiplicity of f
t

is constant (that is,

independent of t for t ∈ C small).
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The method of proof suggested a way to look for possible counterexamples in
the non-quasihomogeneous case. However, since Zariski’s conjecture holds for
curves and semiquasihomogeneous singularities, potential counterexamples
have Milnor number > 1000. For these computations, the existing implemen-
tation of the tangent cone algorithm was not sufficient. Therefore, Greuel, the
second author and H. Schönemann decided to set up such a computer algebra
system with improved algorithms and extended functionality.

The result is nowadays known as Singular which has grown to a ma-
jor specialized computer algebra system used in mathematical research and
teaching, and even in industrial applications (see the article on Singular in
this volume by H. Schönemann and the first author).

The computational complexity provided by the potential counterexam-
ples to Zariski’s conjecture was a big challenge and resulted in sophisticated
strategies for the implementation of Buchberger’s (resp. Mora’s) algorithm.
One can say that the hardness of the problem is one of the main reasons
for Singular to have one of the fastest implementations of a standard basis
algorithm.

Although the search for a counterexample to Zariski’s conjecture failed, it
was not useless. The experiments with Singular suggested a positive answer
to Zariski’s conjecture in another special case, proved in [24]. In general,
Zariski’s conjecture is still open.
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23. On an implementation of standard bases and syzygies in Singular. AAECC

7, 235–149 (with H. Grassmann, B. Martin, W. Neumann, G. Pfister, W.
Pohl, H. Schönemann, T. Siebert, 1996).

24. Advances and improvements in the theory of standard bases and syzygies.
Arch. Math. 66, 163–176 (with G. Pfister, 1996).

25. Description of Singular: A Computer Algebra System for Singularity The-
ory, Algebraic Geometry and Commutative Algebra. Euromath Bulletin 2,

161–172 (1996).

26. The normalisation: a new algorithm, implementation and comparisons. In:

Proc. EUROCONFERENCE Computational Methods for Representations of

Groups and Algebras (1.4.-5.4.1997). Birkhäuser (with W. Decker, T. de
Jong, G. Pfister, 1998).

27. Primary decomposition: algorithms and comparisons. In: G.-M. Greuel, B.H.

Matzat, G. Hiss: Algorithmic Algebra and Number Theory. Springer Verlag,

Heidelberg, 187–220 (with W. Decker, G. Pfister, 1998).
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28. Gröbner bases and algebraic geometry. In: B. Buchberger and F. Winkler:

Gröbner Bases and Applications. LNS 251 , CUP, 109–143 (with G. Pfister,
1998).

29. Applications of Computer Algebra to Algebraic Geometry, Singularity The-
ory and Symbolic-Numerical Solving. In: European Congress of Mathemati-

cians, Barcelona, July 10-14, 2000, Vol. II, 169–188 (2000).

30. Computer Algebra and Algebraic Geometry - Achievements and Perspec-
tives. Journ. Symb. Comp. 30, 253–290 (2000).

31. Three Algorithms in Algebraic Geometry, Coding Theory, and Singularity
Theory. In: C. Ciliberto et al: Application of Algebraic Geometry to Coding

Theory, Physics and Computation, Proceedings. Kluwer, 161–194 (with C.
Lossen, M. Schulze, 2001).

32. A Singular Introduction to Commutative Algebra. Springer-Verlag, 605 pp.
(with G. Pfister, and with contributions by O. Bachmann, C. Lossen and
H. Schönemann, 2002).

33. Two-variable identities for finite solvable groups. C.R. Acad. Sci. Paris, Ser.

I 337, 581–586 (with T. Bandman, F. Grunewald, B. Kunyavskii, G. Pfister,
E. Plotkin, 2003).

34. Engel-Like Identities Characterizing Finite Solvable Groups. To appear in
Compos. Math. (with T. Bandman, F. Grunewald, B. Kunyavskii, G. Pfister,
E. Plotkin, 2005).

Applying Computer Algebra Methods in Mathematical

Research.

The publications [33,34] are related to a problem from group theory. The
solution to this problem may serve as a model for how computer algebra
methods may be used for establishing conjectures and for proving theorems
in other fields of mathematics.

The was problem addressed to G.-M. Greuel and the second author by
B. Kunyavskii. It can be stated as follows:

Characterize the class of solvable finite groups G by explicit two-

variable identities.

To explain this problem, note that a group G is Abelian iff the two-variable
identity xy = yx is satisfied for all x, y ∈ G. Moreover, Zorn (1930) proved
that, setting

v1(x, y) :=
[

x, y
]

:= xyx
−1

y
−1

, v
k+1(x, y) :=

[

v
k
, y
]

,

a finite group G is nilpotent iff there exists some n ≥ 1 such that the two-
variable identity v

n
(x, y) = 1 holds for all x, y ∈ G. The identity v

n
(x, y) = 1

is referred to as an Engel Identity.
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The existence of two-variable (but non-explicit) identities for finite solv-
able groups has been proved by R. Brandl and J.S. Wilson (1981,1988).
B. Plotkin suggested that there should be an explicit definition for such a two-
variable identity U

n
(x, y) = 1, using the recursion U

k+1 = [xU
k
x
−1

, yU
k
y
−1].

A key point has been to find an appropriate candidate for U1(x, y). Indeed,
experimenting with Singular such a candidate was found (see [33,34]):

Theorem. Define U
k

inductively by

U1(x, y) := x
−2

y
−1

x, U
k+1(x, y) :=

[

xU
k
(x, y)x−1

, yU
k
(x, y)y−1

]

.

Then a finite group G is solvable iff there exist some n such that the two-

variable identity U
n
(x, y) = 1 holds for all x, y ∈ G.

That solvable groups satisfy the identity above is clear by the definition of
a solvable group. Thus, it remains to show that for a (minimal) non-solvable
finite group no such equality holds. Fortunately, the minimal non-solvable
finite groups have been classified by Thompson (1968): his list consists of

1. PSL(2, F
p
), p ≥ 5 prime,

2. PSL(2, F2p), p prime,

3. PSL(2, F3p), p prime,

4. PSL(3, F3),

5. the Suzuki groups Sz(2p), p prime.

The key observation that allows one to translate B. Plotkins suggestion
to a problem of algebraic geometry is the following1: if x, y ∈ G satisfy

1 6= U1(x, y) = U2(x, y), then U
n
(x, y) 6= 1 for all n ∈ Z.

It thus remains to show that for each group in Thompson’s list, there are
elements x, y ∈ G such that 1 6= U1(x, y) = U2(x, y).

It is quite instructive to show how such a problem from group theory
can be translated to a problem in algebraic geometry and how to solve it
with the help of computer algebra. Let us consider here the family of groups
G = PSL(2, F

p
), p ≥ 5 a prime. The next two cases of Thomson’s list can be

handeled similarly, the fourth case is treated by giving an explicit example.
The last case, however, has turned out to be much more difficult, with a sur-
prising complexity and involving in addition deep theorems from arithmetic
geometry.

We represent two elements x and y of G by two matrices of the following
types:

x =

(

t 1
−1 0

)

, y =

(

1 b

c 1 + bc

)

,

1This observation is independent of the choice of U1.
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with b, c, t ∈ F
p
.

Clearly we have y 6= x−1 for all (b, c, t) ∈ F3

p
, thus U1(x, y) 6= 1. It re-

mains to show that for each choice of p the equation U1(x, y) = U2(x, y) has
a solution (b, c, t) ∈ F3

p
.

The ideal I ⊂ Z[b, c, t] spanned by the entries of U1(x, y)− U2(x, y) is
generated by four polynomials of degree at most 8. For a fixed prime number
p, it defines a curve in the three-dimensional space over F

p
. To prove that

there are F
p
-rational points on the curve we use the the Hasse-Weil-Theorem

as generalized by Aubry and Perret for singular curves: If C ⊆ F
q

n is an irre-

ducible affine curve, defined over F
q
, q = p

m, and if C ⊂ Pn is its projective

closure, then

#C(F
q
) ≥ q + 1− 2p

a

(

C
)√

q − deg
(

C
)

.

To be able to apply the theorem to our situation, we have to show that
the image of the ideal I in F

p
[b, c, t] defines an irreducible curve C over the

algebraic closure F
p

of F
p
. In algebraic terms, we have to show that the image

of I generates a prime ideal of F
p
[b, c, t].

If this is the case, we may compute the degree and the arithmetic
genus of the projective curve C ⊂ P3 via the Hilbert-polynomial which
equals H(t) = 10t− 11. Hence, deg

(

C
)

= 10 and p
a

(

C
)

= 11 + 1 = 12, and
the Hasse-Weil formula gives #C(F

p
) > 0 for all primes p > 593.

As the remaining finitely many cases can be checked directly with a
computer, it remains to prove that for any prime p ≥ 5, the ideal I · F

p
[b, c, t]

is, indeed, a prime ideal.
We have I · F

p
[b, c, t] =

(

I · F
p
(t)[b, c]

)

∩ F
p
[b, c, t], and I · F

p
(t)[b, c] is

generated by two polynomials f1 ∈ F
p
[b, t], f2 ∈ F

p
[b, c, t], as obtained using

Singular and verified by hand later on. Thus, it is enough to prove that
I · F

p
(t)[b, c] is a prime ideal, which is equivalent to showing that f1 is irre-

ducible in F
q
[t, b]. As the polynomial f1 has a small degree (namely 4) in x,

this could be proved by making an Ansatz and showing that the resulting
systems of polynomial equations have no solution over the algebraic closure
(which was done first by the computer, then by hand).

Work on Cohen-Macaulay Modules and Moduli Spaces.

In the joint paper [15] with H. Knörrer, G.-M. Greuel showed that a reduced
plane curve singularity is of finite CM-representation type, that is, its ana-
lytic local ring has only finitely many isomorphism classes of indecomposable
Cohen-Macaulay modules iff it is a simple (ADE-) singularity.

This result has been extended later by Knörrer and Greuel in a joint
paper with R.-O. Buchweitz and F.-O. Schreyer to arbitrary isolated hyper-
surface singularities [41]. It attracted interest by mathematicians working in
representation theory of finite dimensional algebras, and the question came
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up whether the so-called tame–wild dichotomy for finite dimensional algebras
(proved by Y. Drozd) also holds for curve singularities w.r.t. Cohen-Macaulay
modules. During a workshop in Bielefeld in 1990 organized by C.M. Ringel,
Greuel proposed this as a conjecture when he gave a talk about the construc-
tion of moduli spaces of CM modules over a fixed local ring of a reduced curve
singularity. Y. Drozd, who was in the audience, immediately realized that the
sandwiched construction used for the construction of moduli spaces could be
used to reduce the question to a matrix problem.

The tame–wild dichotomy for CM-modules over curve singularities was
finally proved by Greuel and Drozd in a joint paper. Several other joint pa-
pers of Greuel and Drozd were devoted to the classification of tame curve
and surface [47] singularities and their CM-modules. Moreover, in [45], the
tame–wild dichotomy was shown to hold also for singular projective curves
with a particular nice geometric description of the tame curves for which a
classification of all indecomposable vector bundles resp. torsion free sheaves
was achieved.

In the remaining part of this section, we focus on the general approach to
constructing moduli spaces for singularities and related objects developed by
G.-M. Greuel and the second author in the 1980s. This approach basically
consists of the following steps:

1. Fix some rough invariants.

2. Find the worst object among them you want to classify.

3. Consider the versal deformation X → T of the worst object with fixed
invariants.

4. Prove that this family contains all objects you want to classify.

5. Compute the kernel L of the Kodaira-Spencer map of the family.

6. Compute a stratification {T
α
} of T , by fixing suitable invariants such

that the geometric quotient T
α
/L exists.

7. Modulo the action of a finite group, we obtain coarse moduli spaces.

To illustrate this general idea, let us consider an example:

Classify all R = C[[tc
, t

c+1
, . . .]]-modules of rank one with set of

values Γ = {γ0, . . . , γk
, c, c+1, . . .}, 0 = γ0 < γ1 < . . . < γ

k
< c .

Following our philosophy, we determine the worst object:

M0 =

k
∑

i=1

t
γi + t

cC[[t]] .
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Its versal deformation is given by

MΓ =

k
∑

i=1

m
i
· C[λ][[tc, tc+1

, . . .]] + t
cC[λ][[t]],

where λ =
{

λ
i,j

}

j+γi /∈Γ
, and m

i
= t

γi +
∑

j+γi /∈Γ
λ

i,j
t
j+γi. The Kodaira-Spencer

map is a mapping

ρ : DerC C[λ] −→ Ext1

C[λ][[tc,...]]
(MΓ, MΓ) ,

and t, t
′
∈ T = Spec(C[λ]) define isomorphic modules iff they are in the same

integral manifold of the kernel L of ρ. This kernel is of the form
∑

`
C[λ]δ

`
,

with L =
∑

`
Cδ

`
an Abelian Lie algebra.

The computation of the moduli spaces as geometric quotients is based on the
following theorem:

Theorem. Let A be a K-algebra, L⊂ Dernil

K
(A) a Lie algebra, δ1, . . . , δn

∈L

such that L ⊂
∑

n

`=1
Aδ

`
, and let x1, . . . , xn

be elements of A such that

det
(

δ
`
(x

j
)
)

is a unit in A and such that for each k-minor M of the first k

columns of
(

δ
`
(x

j
)
)

we have δ(M) ∈
∑

j<k
Aδ(x

j
). Then the following holds:

(1) A
L[x1, . . . , xn

] = A and x1, . . . , xn
are algebraically independent over

AL. In particular, Spec(A)→ Spec
(

A
L
)

is a (trivial) geometric quo-

tient.

(2) If, additionally, L = L is a finite dimensional nilpotent Lie algebra of

dimension n, then H
1(L, A) = 0.

This theorem has as consequence the following corollary which is the basis
for the applications:

Corollary. Let A be a Noetherian K-algebra, L ⊂ Dernil

K
(A) a finite dimen-

sional, nilpotent Lie algebra, and let d : A→ Hom
K

(L, A) be the differential,

da(δ) = δ(a). Assume that the following holds:

• 0 = Z
k+1(L) ⊂ Z

k
(L) ⊂ . . . ⊂ Z0(L) = L is a finite filtration of L sat-

isfying [L, Z
j
(L)] ⊂ Z

j+1(L).

• 0 = F
−1(A) ⊂ F

0(A) ⊂ F
1(A) ⊂ . . . is a filtration of the K-algebra A

such that δ(F i(A)) ⊂ F
i−1(A) for all i and all δ ∈ L.

• Spec(A) =
⋃

α
U

α
is the flattening stratification of the modules

HomK
(L, A)

/

A · d(F i(A)) , Hom
K

(Z
j
(L), A)

/

π
j
(A · d(A)) ,

where πj
: Hom

K
(L, A)→ Hom

K
(Z

j+1(L)) denotes the canonical pro-

jection.
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Then U
α

is L-invariant and admits a locally trivial geometrical quotient with

respect to the action of L.

We illustrate the use of this corollary by continuing the example treated
above: in this case, L is Abelian, therefore no Z-filtration is needed.

Let a be the multiplicity of the maximal semigroup Γ0 ⊂ Γ acting on Γ.
Then we define F i(C[λ]) to be the C-vector space generated by all quasiho-
mogeneous polynomials in C[λ] of degree less than (i + 1) · a. Here, we assign
the degree j to λ

ij
, which makes the vector fields δ

`
homogeneous of degree

−`.
Then the assumptions of the corollary are satisfied for the nilpotent Lie

algebra L(0) :=
∑

`≥a
Cδ

`
⊂ L. Hence, if Spec(C[λ]) =

⋃

α
U

α
is the flatten-

ing stratification of the modules HomC(L(0)
, C[λ])/C[λ] · d(F i(C[λ])), then

U
α
→ U

α
/L

(0) is a geometric quotient. Using an H
1-vanishing argument, one

can show that U
α
→ U

α
/L is a geometric quotient, too (see [37] for details).

This quotient turns out to be the moduli space of all modules with a certain
Hilbert function fixed.
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Geom. 2, 81-135 (with G. Pfister, 1993).

37. Moduli for Singularities. In: J.-P. Brasselet: Singularities. London Math.

Soc. Lect. Notes 201, CUP, 119–146 (with G. Pfister, 1994).

38. On moduli spaces of semiquasihomogeneous singularities. In: Algebraic ge-

ometry and singularities (La Ràbida, 1991). Birkhäuser Progress in Mathe-

matics 134, 171–185 (with G. Pfister, 1996).

39. Moduli Spaces of Semiquasihomogeneous Singularities with fixed Principal
Part.Journ. Alg. Geom. 6, 169–199 (with C. Hertling, G. Pfister, 1994).

40. Geometric quotients of unipotent group actions II. In: V.I. Arnold, G.-M.
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Work on Equisingular Families

The short paper [48], actually an appendix to a paper of A. Tannenbaum in
Compos. Math. 1984, was, in a sense, the initial point for G.-M. Greuel to start
his own research on equisingular families. Tannenbaum observed that Segre’s
analysis of families with prescribed singularities can be rigorously justified for
curves with at most ordinary nodes and cusps as singularities: Segre associated
his characteristic linear series to H0

(

C, n∗
˜N

)

, where ˜N is a certain locally
free sheaf on the normalization. Correct would have been H0

(

C, I
Z

ea(C)(C)
)

,
where Zea(C) is the zero-dimensional scheme locally defined by the Tjurina
ideal. Indeed, Tannenbaum proved the existence of an exact sequence

0 −→ I
Z

ea(C)(C) −→ n∗
˜N −→ T −→ 0 ,

where T is a torsion sheaf supported at the singular locus of C, with stalk
T

x
= 0 if (C, x) is a node or a cusp.
As an addendum, Greuel computed the dimension of T

x
as

dimC T
x

= τ(C, x) + r(C, x)−mult(C, x)− δ(C, x) .

In particular, at a singular point x of C, T
x

is nonzero unless this singular
point is either a node or a cusp.

Greuel’s interest in equisingular families of curves with arbitrary singu-
larities (not just nodes and cusps) was stimulated, and more questions came
up. To describe some of these, we restrict ourselves to the case of plane curves,
using the following definition:

Definition. Let S1, . . . , Sr
be (analytic or topological) types of plane curve

singularities. Then we set

V
d
(S1, . . . , Sr

) :=







C ⊂ P2

∣

∣

∣

∣

∣

∣

C is a reduced curve of degree d,
having exactly r singular points of
types S1, . . . , Sr







,

respectively V
irr

d
(S1, . . . , Sr

) where it is additionally assumed that C is irre-
ducible.
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In a joint work first with U. Karras [49], Greuel showed that the set
V

d
(S1, . . . , Sr

) carries a natural structure as a complex space, even for an-
alytic types of arbitrary isolated singularities, given by deformation theory.
Moreover, with U. Karras and then with E. Shustin and the first author,
G.-M. Greuel looked for general numerical criteria answering the following
questions (for V = V

d
(S1, . . . , Sr

), resp. V
irr

d
(S1, . . . , Sr

)):

• Is V non-empty ?

• Is V smooth (that is, is the characteristic linear series complete) ?

• Is V T-smooth (that is, smooth and of the expected dimension) ?

• Is V irreducible ?

The general method for answering these questions is based on a translation
to a statement about the cohomology of ideal sheaves of zero-dimensional
schemes.

For instance, the T-smoothness property for analytic types translates as

V is T-smooth at C ⇐⇒ H
1
(

J
Z

ea(C)(d)
)

= 0 ,

for Zea(C) ⊂ P2 the zero-dimensional scheme which is locally given by the
Tjurina ideal for a local equation of C. For topological types, Zea(C) has to
be replaced by the zero-dimensional scheme Z

es(C) which is locally given by
the equisingularity ideal in the sense of J. Wahl.

The first criteria obtained have been based on the following vanishing
theorem of Riemann-Roch-type (see [49,50]):

Theorem. Let S be a smooth projective surface, C ⊂ S a reduced curve. Let

F be a torsion-free, coherent O
C
–module having rank 1 on each irreducible

component C
i
of C, i = 1, . . . , s. Then H

1
(

C,F
)

vanishes if

χ(ω
C
⊗O

Ci
)− isod

Ci
(F ,O

C
) < χ(F

Ci
)

for all i = 1, . . . , s. Here, F
Ci

= F ⊗O
Ci

(mod torsion). Moreover,

isod
Ci,x

(F ,G) := min(dimC coker(ϕ
Ci

: F
Ci,x

↪→ G
Ci,x

)) ,

where the minimum is taken over all ϕ
Ci

, which are induced by homomor-

phisms ϕ : F
x
→ G

x
.

As a consequence, it was shown in [49,50] that V is T-smooth at C if the total
(equisingular) Tjurina number of C is bounded by a linear function in the
degree of d. The resulting criteria are usually referred to as the 3d-criterion
and the 4d-criterion.
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A slightly weaker 4d-criterion was found before by E. Shustin by different
methods. G.-M. Greuel met E. Shustin at the ICM 1990 in Kyoto (Japan)
where they discussed the different approaches and realized that joining efforts
could result in a major progress in this area.

A major breakthrough in the study of equisingular families was the first
asymptotically proper general sufficient condition for the existence of plane
curves with prescribed (topological types of) singularities obtained in [53]:

Theorem. If S1, . . . , Sr
are topological types of singularities, and if

r
∑

i=1

µ(S
i
) ≤

1

392
(d+2)2

,

then V
irr

d
(S1, . . . , Sr

) is non-empty.

This criterion is referred to as being asymptotically proper, since (from the
asymptotical point of view) it differs from the necessary criterion

r
∑

i=1

µ(S
i
) ≤ (d−1)2

for non-emptyness only by a constant factor. Later, this factor 1

392
has been

improved to 1

9
, and the statement has been extended to analytic types by

E. Shustin.
For the T-smoothness problem, the linear right-hand side (as in the 3d-

and 4d-criterion) could be replaced by a quadratic function in d, too. So far,
the best known general sufficient criterion has been obtained in [55,56]:

Theorem. Let d ≥ 6. Then V irr

d
(S1, . . . , Sr

) is T-smooth at C if

r
∑

i=1

γ
ea(C, z

i
) ≤ (d + 3)2

,

(

resp.

r
∑

i=1

γ
es(C, z

i
) ≤ (d + 3)2

)

,

for new invariants γea
≤ (τ + 1)2, γ

es
≤ (τ es + 1)2.

In particular, for families of curves with n nodes and k cusps (resp. for families
of curves with ordinary m

i
-fold points) the sufficient condition reads

4n + 9k ≤ (d + 3)2

(

resp. 4 ·#(nodes) +
∑

mi>2

2m2

i
≤ (d + 3)2

)

.

For the irreducibility problem, the best known general sufficient criterion is:
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Theorem. If max
i=1..r

τ
′(S

i
) ≤ (2/5) ·d− 1 and

25

2
·#(nodes) + 18 ·#(cusps) +

10

9
·

∑

τ
′(Si)≥3

(

τ
′(S

i
)+2

)2

< d
2
,

then V
irr

d
(S1, . . . , Sr

) is non-empty and irreducible.

Here τ ′ refers to the Tjurina number, resp. to the equisingular Tjurina num-
ber, that is, the codimension of the equisingularity ideal.

In contrast to the conditions for non-emptiness and T-smoothness, this
condition seems not to be asymptotically proper. Indeed, for instance, for
plane curves with r ordinary m-fold points, the known examples of reducible
families (see [56]) satisfy d2

∼ r ·m
2 while the left-hand side of our criterion

is of type r ·
m

4

4
.
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Exterior Algebra Methods for the

Construction of Rational Surfaces in

the Projective Fourspace

Hirotachi Abo Frank-Olaf Schreyer

Abstract

The aim of this paper is to present a construction of smooth rational
surfaces in projective fourspace with degree 12 and sectional genus
13. The construction is based on exterior algebra methods, finite field
searches and standard deformation theory.

Introduction

This paper is dedicated to Gert-Martin Greuel on the occasion of his sixtieth
birthday. The use of computer algebra systems is essential for the proof of the
main result of this paper. It will become clear that without computer algebra
systems like Singular and Plural developed in Kaiserslautern we could not ob-
tain the main result of this paper at all. We thank the group in Kaiserslautern
for their excellent program.

Hartshone conjectured that only finitely many components of the Hilbert
scheme of surfaces in P4 correspond to smooth rational surfaces. In 1989, this
conjecture was positively solved by Ellingsrud and Peskine [6]. The exact
bound for the degree is, however, still open. This motivates our search for
smooth rational surfaces in P4. Examples of smooth rational surfaces in P4

prior to this paper were known up to degree 11, see [4]. Our main result is
the proof of existence of the following example.

Theorem 0.1. There exists a family of smooth rational surfaces in P4 over

C with d = 12, π = 13 and hyperplane class

H ≡ 12L−

2
∑

i1=1

4E
i
−

11
∑

i2=3

3E
i
−

14
∑

i3=12

2E
i
−

21
∑

i4=15

E
i
.

1991 Mathematics Subject Classification. 14J10, 14J26 (secondary: 14Q10)
Key words. Rational surface, monad, exterior algebra, finite field
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in terms of a plane model.

Abstractly, these surfaces arise as the blow up of P2 in 21 points. L and E
i
in

the Theorem denote the class of a general line and the exceptional divisors.

The 21 points lie in special position due to the fact that we need
h0(X,O(H) = 5 and h1(X,O(H)) = 4. Indeed, it will turn out that the
component of the Hilbert scheme corresponding to these surfaces has dimen-
sion 38, hence up to projectivities this is a 38 − 24 = 14 dimensional family
of abstract surfaces. This fits with the fact that the 21 points have to satisfy
a condition of codimension ≤ 20 = 4 · 5, which leaves us with a family of col-
lections of points in P2 of dimension ≥ 2 · 21− 20 = 22. Up to automorphism
of P2 this leads to a family of dimension ≥ 22 − 8 = 14, and hence equality
holds. The great difficulty to find points in P2 in very special positions was
one of the sources, which led Hartshorne to his conjecture.

We construct these surfaces via their “Beilinson monad”: Let V be an
n + 1-dimensional vector space over a field K and let W be its dual space.
The basic idea behind a Beilinson monad is to represent a given coherent
sheaf on Pn = P(W ) as a homology of a finite complex of vector bundles,
which are direct sums of exterior powers of the tautological rank n subbundle
U = ker

(

W ⊗OP(W )→ OP(W )(1)
)

on P(W ). (Thus U ' Ω1(1) is the twisted
sheaf of 1-forms. As Beilinson, we will use the notation Ωp(p) for the exterior
powers of U .)

The differentials in the monad are given by homogeneous matrices over
an exterior algebra E =

∧

V . To construct a Beilinson monad for a given
coherent sheaf, we typically take the following steps: Determine the type of
the Beilinson monad, that is, determine the vector bundles of the complex,
and then find differentials in the monad.

Let X be a smooth rational surface in P4 = P(W ) with degree 12 and
sectional genus 13. The type of a Beilinson monad for the (suitably twisted)
ideal sheaf of X can be derived from the knowledge of its cohomology groups.
Such information is partially determined from general results such as the
Riemann-Roch formula and the Kodaira vanishing theorem. It is, however,
hard to determine the dimensions of all cohomology groups needed to de-
termine the type of the Beilinson monad. For this reason, we assume that
the ideal sheaf of X has the so-called “natural cohomology” in some range
of twists. In particular, we assume that in each twist −1 ≤ n ≤ 6 at most
one of the cohomology groups Hi(P4

, I
X

(n) for i = 0 . . . 4 is non-zero. This is
an open condition for surfaces in a given component of the Hilbert scheme.
Under this assumption the Beilinson monad for the twisted ideal sheaf I

X
(4)

of X has the following form:

4Ω3(3)
A

→ 2Ω2(2)⊕ 2Ω1(1)
B

→ 3O. (1)
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To detect differentials in (1), we use the following techniques developed re-
cently: (1) the first technique is an exterior algebra method due to Eisenbud,
Fløystad and Schreyer [5] and (2), the other one is the method using small
finite fields and random trials due to Schreyer [9].

(1) Eisenbud, Fløystad and Schreyer presented an explicit version of
the Bernstein-Gel’fand-Gel’fand correspondence. This correspondence is an
isomorphism between the derived category of bounded complexes of finitely
generated S-graded modules and the derived category of certain “Tate reso-
lutions” of E-modules, where S = Sym

K
(W ). As an application, they con-

structed the Beilinson monad from the Tate resolution explicitly. This enables
us to describe the conditions, that the differentials in the Beilinson monad
must satisfy in an exterior algebra context.

(2) Let M be a parameter space for objects in algebraic geometry such
as the Hilbert scheme or a moduli space. Suppose that M is a subvariety
of a rational variety G of codimension c. Then the probability for a point p

in G(F
q
) to lie in M(F

q
) is about (1 : q

c). This approach will be successful
if the codimension c is small and the time required to check p 6∈ M(F

q
)

is sufficiently small as compared with qc. This technique was applied first
by Schreyer [9] to find four different families of smooth surfaces in P4 with
degree 11 and sectional genus 11 over F3 by a random search, and he provided
a method to establish the existence of lifting these surfaces to characteristic
0. This technique has been successfully applied to solve various problems in
constructive algebraic geometry (see [10], [12] and [1]).

The Singular or Macaulay2 scripts used to construct and to analyse these
surfaces are available at http://www.math.uni-sb.de/~ag-schreyer and
http://www.math.colostate.edu/∼abo/programs.html.

1 The Exterior Algebra Method

Our construction of the rational surfaces uses the “Beilinson monad”. A
Beilinson monad represents a given coherent sheaf in terms of direct sums
of (suitably twisted) bundles of differentials and homomorphisms between
these bundles, which are given by homogeneous matrices over an exterior al-
gebra E. Recently, Eisenbud, Fløystad and Schreyer [5] showed that for a
given sheaf, one can get the Beilinson monad from its “Tate resolution”, that
is a free resolution over E, by a simple functor. This enables us to discuss
the Beilinson monad in an exterior algebra context. In this section, we take a
quick look at the exterior algebra method developed by Eisenbud, Fløystad
and Schreyer.
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1.1 Tate Resolution of a Sheaf

Let W be a (n +1)-dimensional vector space over a field K, let V be its dual
space, and let {x

i
}0≤i≤n

and {e
i
}0≤i≤n

be dual bases of V and W respectively.
We denote by S the symmetric algebra of W and by E the exterior algebra
∧

V on V . Grading on S and E are introduced by deg(x) = 1 for x ∈ W and
deg(e) = −1 for e ∈ V respectively. The projective space of 1-quotients of W

will be denoted by Pn = P(W ).
Let M =

⊕

i∈Z
M

i
be a finitely generated S-graded module. We set

ω
E

:= Hom
K

(E, K) =
∧

W = E ⊗
K

n+1
∧

W ' E(−n− 1)

and
F

i := Hom
K

(E, M
i
) 'M

i
⊗

K
ω

E
.

The morphism φi
: F

i
→ F

i+1 takes the map α ∈ F
i to the map

[

e 7→

∑

i

x
i
α(e

i
∧ e)

]

∈ F
i+1

.

Then the sequence

R(M) : · · · → F
i−1 φi−1

−→ F
i

φi
−→ F

i+1
→ · · ·

is a complex. This complex is eventually exact. Indeed, R(M) is exact at
Hom

K
(E, M

i
) for all i ≥ s if and only if s > r, where r is the Castelnouvo-

Mumford regularity of M (see [5] for a detailed proof). So starting from
T(M)>r := T(M

>r
), we can construct a doubly infinite exact E-free complex

T(M) by adjoining a minimal free resolution of the kernel of φ
r+1:

T(M) : · · · → T
r

→ T
r+1 := Hom

K
(E, M

r+1)
φr+1

−→ Hom
K

(E, M
r+2)→ · · · .

This E-free complex is called the Tate resolution of M . Since T(M) can be
constructed by starting from R(M

>s
), s ≥ r, the Tate resolution depends

only on the sheaf F = ˜M on P(W ) associated to M . We call T(F) := T(M)
the Tate resolution of F . The following theorem gives a description of all the
terms of a Tate resolution:

Theorem 1.1 ([5]). Let M be a finitely generated graded S-module and let

F := ˜M be the associated sheaf on P(W ). Then the term of the complex T(F)
with cohomological degree i is

⊕

j
Hj
F(i− j)⊗ ω

E
.

Important to us is also the fact the dual complex Hom
E
(T(F), E) stays exact.
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1.2 Beilinson Monad

Eisenbud, Fløystad and Schreyer [5] showed, that applying a simple functor
to the Tate resolution T(F), gives a finite complex of sheaves whose homology
is the sheaf F itself: Given T(F), we define Ω(F) to be the complex of vector
bundles on P(W ) obtained by replacing each summand ω

E
(i) by the bundle

Ωi(i). The differentials of the complex are given by using isomorphisms

Hom
E
(ω

E
(i), ω

E
(j)) '

i−j
∧

V ' Hom(Ωi(i), Ωj(j)).

Theorem 1.2 ([5]). Let F be a coherent sheaf on P(W ). Then F is the

homology of Ω(F) in cohomological degree 0, and Ω(F) has no homology

otherwise.

We call Ω(F) the Beilinson monad for F .

2 Construction

In this section we will construct our family of rational surfaces X in P4 with
degree d = 12, sectional genus π = 13. The construction takes the following
four steps:

(1) Analyse the monad and parts of the Tate resolution.

(2) Find a smooth surface X with the prescribed invariants over a finite
field of a small characteristic.

(3) Determine the type of the linear system, which embeds X into P4 to
justify that the surface X found in the previous step is rational.

(4) Establish the existence of a lift to characteristic zero.

2.1 Analysis of the Monad and Tate Resolution

Let K be a field, let W be a five-dimensional vector space over K with basis
{x

i
}0≤i≤4, and let V be its dual space with dual basis {e

i
}0≤i≤4. Let X be a

smooth surface in P4 = P(W ) with the invariants given above. The first step is
to determine the type of the Beilinson monad for the twisted ideal sheaf of X,
which is derived from the partial knowledge of its cohomology groups. Such
information can be determined from general results such as the Riemann-
Roch formula and Kodaira vanishing theorem (see [2] for more detail). We
assume that X has the natural cohomology in the range −1 ≤ j ≤ 6 of
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twists:

j

i

13

4 2

2 3

5 29

hiIX(j)

−1 0 1 2 3 4 5 6

0

1

2

3

4

Here a zero is represented by the empty box. By Theorem 1.1, the Tate
resolution T(I

X
)[4] = T(I

X
(4)) includes an exact E-free complex of the

following type:

→ 4ω
E
(3)→ 2ω

E
(2)⊕ 2ω

E
(1)→ 3ω

E
⊕ 5ω

E
(−1)→ 29ω

E
(−2)→ · · · . (2)

From Theorem 1.2, it follows therefore, that the corresponding Beilinson
monad for I

X
(4) is of the following type:

0→ 4Ω3(3)
A

→ 2Ω2(2)⊕ 2Ω1(1)
B

→ 3O → 0. (3)

The next step is to describe what maps A and B could be the differentials of
the monad (3). The identifications

Hom(Ωi(i), Ωj(j)) ' Hom
E
(ω

E
(i), ω

E
(j)) ' Hom

E
(E(i), E(j)),

allow us to think of the maps A and B as homomorphisms between E-free
modules. Since the Tate resolution and its E-dual are exact, the matrix A

determines B up to isormorphism.
However, we start with B in our construction. To ease our calculations,

we take the map

2ω
E
(1)

B1

→ 3ω
E

to be defined by the matrix

B1 =





e0 e1

e1 e2

e3 e4



 ,

Since the GL(5, K) × GL(2, K) × GL(3, K) orbit of this matrix is dense in
Hom

E
(2ω

E
(1), 3ω

E
) this is a reasonable mild additional assumption. The cru-

cial step in the construction is the choice of the map

3ω
E

C

→ 4ω
E
(−2),
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where the target 4ω
E
(−2) is a free summand of the cokernel of the map

5ω
E
(−1)→ 29ω

E
(−2). Note that C ◦B = 0 must hold in the Tate resolu-

tion. The condition C ◦B1 = 0 means, that C corresponds to a 4-dimensional
quotient space of

T = Coker(2Λ3
W

B1

→ 3Λ2
W ).

An exterior algebra computation proves that dim T = 10 = 3 ∗ 10− 2 ∗ 10 as
expected. Indeed the map to T is given by the following 10× 3 matrix of two
forms in E:

ϕ =

































0 0 e3e4

0 −e3e4 e2e3 − e1e4

−e3e4 0 e1e3 − e0e4

0 e1e4 − e2e3 e1e2

e2e3 − e1e4 e1e3 − e0e4 −e0e2

e0e4 − e1e3 0 e0e1

0 e1e2 0
e1e2 e0e2 0
e0e2 e0e1 0
e0e1 0 0

































Thus we obtain C from a point [c] ∈ G = G(10, 4) in the Grassmanian as the
product C = ϕ ◦ c, where c ∈ K

4×10 denotes a representing 4 × 10 matrix.
For these C the condition C ◦B1 = 0 will be satisfied.

Consider

M = {[c] ∈ G | ∃B2 with C ◦B2 = 0}.

More precisely, we consider those [c] ∈ G such that

0→ 2Λ4
W

B1

→ 3Λ3
W

C

→ 4W → 0

has two dimensional homology in the middle. The alternating dimensions of
the vector spaces in the complex add to zero 2 ∗ 5 − 3 ∗ 10 + 4 ∗ 5 = 0. The
complex is exact for a general choice of [c] ∈ G as we see by a computation in
an example. Thus [c] ∈ G, which give the desired two-dimensional homology
in the middle, also give two-dimensional homology at the right. We conclude
that M ⊂ G has codimension at most 4 = 2 ∗ 2 at such points [c].

Once we have choosen a [c] ∈ M, we can expect, that B = (B1, B2) and
C determine the monad and hence the desired surface, due to the following
Hilbert function argument:

The alternating sum of the dimensions in the complex

0→ 2Λ3
W ⊕ 2Λ4

W
B

→ 3Λ2
W

C

→ 4K → 0
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is 2 ∗ 10 + 2 ∗ 5− 3 ∗ 10 + 4 = 4. Hence we expect a 4 dimensional homology
on the right, which gives the matrix A.

In summary, we proved the following proposition.

Proposition 2.1. There exists a quasi-projective subvariety M ⊂ G(10, 4) of

codimension at most 4, whose points define a monad of a smooth rational sur-

face in P4. The PGL(5, K) orbit of each family corresponding to a component

of M is an open part of a component of the Hilbert scheme of surfaces.

Here K denotes the algebraic closure of our ground field K.

Proof. Indeed, apart from the condition [c] ∈M, all other conditions are open
conditions.

However, this does not prove, that M is non-empty. Note that M is defined
over the integers Z.

2.2 Finite Field Search

If M is not empty we can expect to find a point in M(F
q
) ⊂ G(F

q
) at a rate of

(1 : q4) by Proposition 2.1. The statistics suggests that there are two different
components of M(F5) ⊂ G(F5), whose elements have syzygies with Betti table

2 4 . . .
1 . 3 2 .
0 . . 2 4
-1 . . . 5

and

2 4 . . .
1 . 3 2 .
0 . . 2 4
-1 . . . 10

However, we never obtained a Beilinson monad of a surface from an example
with the Betti table of the second type. So these points do not belong to
M(F5). Examples with the first Betti table appeared 18 times in a test of
54
· 10 examples. It will turn out, that this family has indeed codimension 4.

Proposition 2.2. There is a smooth surface in P4 over F5 with d = 12 and

π = 13.

Proof. By random search, we can find C ∈M(F5) and hence B and A satisfy-
ing the desired conditions. Determine the corresponding maps A : 4Ω3(3)→
2Ω2(2) ⊕ 2Ω1(1) and B = (B2, B1) : 2Ω2(2) ⊕ 2Ω1(1) → 3O. Then compute
the homology ker(B)/ im(A). If the homology is isomorphic to the ideal sheaf
of a surface with the desired invariants, then check smoothness of the surface
with the Jacobian criterion. If we are lucky, the surface is smooth. If not, we
search for a further C ∈M(F5).
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For example, the point [c] ∈ M(F5) represented by the matrix

c =









2 2 −2 0 −2 2 −1 1 −1 −2
1 −1 2 2 −1 2 2 0 2 −2
1 −2 1 −2 0 −1 −2 2 1 −2
−2 −1 −2 −1 0 2 0 −1 2 1









leads to a smooth surface in P4 defined over F5 of degree d = 12 and sectional
genus π = 13.

2.3 Adjunction Process

In this subsection, we spot the surface found in the previous step within the
Enriques-Kodaira classification and determine the type of the linear system
that embeds X into P4. First of all, we recall a result of Sommese and Van
de Ven for a surface over C:

Theorem 2.3 ([11]). Let X be a smooth surface in Pn over C with degree d,

sectional genus π, geometric genus p
g

and irregularity q, let H be its hyper-

plane class, let K be its canonical divisor and let N = π − 1 + p
g
− 1. Then

the adjoint linear system |H + K| defines a birational morphism

Φ = Φ|H+K| : X → PN−1

onto a smooth surface X1, which blows down precisely all (−1)-curves on X,

unless

(i) X is a plane, or Veronese surface of degree 4, or X is ruled by lines;

(ii) X is a Del Pezzo surface or a conic bundle;

(iii) X belongs to one of the following four families:

(a) X = P2(p1, . . . , p7) embedded by H ≡ 6L−
∑

7

i=0
2E

i
;

(b) X = P2(p1, . . . , p8) embedded by H ≡ 6L−
∑

7

i=0
2E

i
− E8;

(c) X = P2(p1, . . . , p8) embedded by H ≡ 9L−
∑

8

i=0
3E

i
;

(d) X = P(E), where E is an indecomposable rank 2 bundle over an

elliptic curve and H ≡ B, where B is a section B2 = 1 on X.

Proof. See [11] for the proof.

Setting X = X1 and performing the same operation repeatedly, we obtain a
sequence

X → X1 → X2 → · · · → X
k
.
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This process will be terminated if N − 1 ≤ 0. For a surface with nonnegative
Kodaira dimension, one obtains the minimal model at the end of the adjunc-
tion process. If the Kodaira dimension equals −∞, we end up with a ruled
surface, a conic bundle, a Del Pezzo surface, P2, or one of the few exceptions
of Sommese and Van de Ven.

It is not known, whether the adjunction theory holds over a finite field.
However, we have the following proposition:

Proposition 2.4 ([4], Prop. 8.3). Let X be a smooth surface over a field

of arbitrary characteristic. Suppose that the adjoint linear system |H + K|

is base point free. If the image X1 in PN under the adjunction map Φ|H+K|

is a surface of the expected degree (H + K)2, the expected sectional genus
1

2
(H + K)(H + 2K) + 1 and with χ(O

X
) = χ(O

X1
), then X1 is smooth and

Φ : X → X1 is a simultaneous blow down of the K
2

1
−K

2 many exceptional

lines on X.

Remark 2.5. The union of the exceptional divisors contracted in each step
is defined over the base field.

In [2] and [4], it is described how to compute the adjunction process for
a smooth surface given by explicit equations (see [4] for the computational
details). Let X be the smooth surface found in the previous step. The com-
putation for the adjunction process in characteristic 5 gives

H ≡ 12L−

2
∑

i1=1

4E
i1
−

11
∑

i2=3

3E
i2
−

14
∑

i3=12

2E
i3
−

21
∑

i4=15

E
i4
, (4)

where L is the class of a line in P2. This process ends with a Del Pezzo surface
of degree 7, which is the blowing up of P2 in two points. Therefore we can
conclude that X is rational.

2.4 Lift to Characteristic Zero

In the previous step, we constructed a smooth surface in P4 defined over F5.
However, our main interest is the field of complex numbers C. In this section,
we show the existence of a lift to characteristic 0 as follows: Let M and G be
given as in the previous subsections.

Proposition 2.6 ([9]). Let [c] ∈ M(F
p
) be a point, where M ⊂ G has codi-

mension 4. Then there exist a number field L, a prime p in L with residue field

OL,p/pOL,p ' F
p

and a family of surfaces X defined over OL,p with special

fiber the surface X defined over F
p
corresponding to [c]. Furthermore, since the

surface X/F
p

corresponding to [c] is smooth, the surface X/L corresponding

to the generic point of Spec L ⊂ SpecOL,p is also smooth.
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Proof. Let p be a prime number. If this is not the case, Z has to be replaced
by the ring of integers in a number field which has F

p
as the residue field.

Since M has pure codimension 4 in [c], there are four hyperplanes
H1, . . . , H4 in G, such that [c] is an isolated point of M(F

p
) ∩H1 ∩ · · · ∩H4.

We may assume that H1, . . . , H4 are defined over Spec Z and that they meet
transversally in [c]. This allows us to think that M ∩ H1 ∩ · · · ∩ H4 is de-
fined over Z. Let Z be an irreducible component of MZ containing C. Then
dim Z = 1.

The residue class field of the generic point of Z is a number field L that
is finitely generated over Q, because M is projective over Z. Let OL be the
ring of integers of L and let p be a prime ideal corresponding to [c] ∈ Z. Then
SpecOL,p → Z ⊂M is an OL,p-valued point which lifts [c].

Performing the construction of the surface over OL,p gives a flat family
X of surfaces over OL,p. Since smoothness is an open property, and since the
special fiber X = Xp is smooth, the general fiber XL is also smooth.

Next, we argue that the adjunction process of the surface over the number
field L has the same numerical behavior:

Proposition 2.7 ([4], Cor. 8.4). Let X → SpecOL,p be a family as in

Proposition 2.6. If the Hilbert polynomial of the first adjoint surface of X =
X ⊗ F

q
is as expected, and if H1(X,O

X
(−1)) = 0, then the adjunction map

of the general fiber XL blows down the same number of exceptional lines as

the adjunction map of the special fiber X.

Last step in the proof of Theorem 0.1. Let [c] be the element of M(F5), which
gives the surface in Proposition 2.2. We check, that [c] satisfies the condition
of Proposition 2.6 by computing the Zariski tangent space TM,[c] at [c]. Our
computation shows that codim TM,[c] = 4. So M is smooth of codimension 4
at [c], and [c] and hence the surface lift to a number field.

Finally we count dimension. Our component M ⊂ G(10, 4) containing [c]
has codimension 4, hence dimension 4 ∗ (10− 4)− 4 = 20. The normalization
of B1 (up to conjugation) gives additional 18 parameters, because the Hilbert
scheme of cubic scrolls in P(V ) has dimension 18. So the component of the
Hilbert scheme, that contains our surface, has dimension 38.
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Abstract

In this survey, we review part of the theory of superisolated surface
singularities (SIS) and its applications including some new and re-
cent developments. The class of SIS singularities is, in some sense, the
simplest class of germs of normal surface singularities. Namely, their
tangent cones are reduced curves and the geometry and topology of
the SIS singularities can be deduced from them. Thus this class con-

tains, in a canonical way, all the complex projective plane curve theory,
which gives a series of nice examples and counterexamples. They were
introduced by I. Luengo to show the non-smoothness of the µ-constant
stratum and have been used to answer negatively some other interest-
ing open questions. We review them and the new results on normal
surface singularities whose link are rational homology spheres. We also
discuss some positive results which have been proved for SIS singular-
ities.

Introduction

A superisolated surface, SIS for short, singularity (V, 0) ⊂ (C3
, 0) is a generic

perturbation of the cone over a (singular) reduced projective plane curve C

of degree d, C = {f
d
(x, y, z) = 0} ⊂ P2, by monomials of higher degree. The

geometry, resolution and topology of (V, 0) is determined by the singulari-
ties of C and the pair (P2

, C). This provides a canonical way to embed the
classical and rich theory of complex projective plane curves into the theory
of normal surface singularities of (C3

, 0). In this way one can use properties
of plane curves to get interesting properties of SIS singularities. They were
introduced by I. Luengo [45], and were used to answer several questions and

2001 Mathematics Subject Classification. 32Sxx, 4B05,14H20,14J17
Key words: normal surface singularities, plane curves, monodromy, deformations
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conjectures, like the fact that the µ-constant stratum in the semiuniversal
deformation space of an isolated hypersurface singularity is, in general, not
smooth. Using Zariski pairs as tangent cones of SIS singularities, E. Artal
[2] found also counterexamples for a S. S.-T. Yau’s conjecture [91] relating
the link of the singularity, the characteristic polynomial and the embedded
topology. A Zariski pair is a set of two curves C1, C2 ⊂ P2 with the same
combinatorial type but such that (P2

, C1) is not homeomorphic to (P2
, C2).

In a recent paper [47], A. Némethi and the last two authors have found
counterexamples to several conjectures on normal surface singularities whose
link is a rational homology sphere. For doing this there were used SIS singu-
larities whose tangent cone is a rational cuspidal curve. It was shown that the
Seiberg-Witten invariant conjecture (of L.I. Nicolaescu and A. Némethi [56]),
the universal abelian cover conjecture (of W. Neumann and J. Wahl [64]) and
the geometric genus conjecture ([62, Question 3.2], see also [55, Problem 9.2])
fail (at least at that generality in which they were formulated).

On the other hand, from the positive point of view, SIS singularities have
been used by Pi. Cassou-Noguès and the authors [7] to confirm the Mon-
odromy Conjecture for the topological zeta function introduced by J. Denef
and F. Loeser [15]. We review these results in Section 4.

It is interesting to point out that the relationship between plane curves
and normal surface singularities can be used also in the other direction: to
use results and ideas from normal surface singularities to get new results
about curves. In this way, the results in [7] allow to find necessary conditions
for the existence of an arrangement of rational plane curves. Even more,
J. Fernández de Bobadilla, A. Némethi and the last two authors [20] have
found a compatibility property for a rational cuspidal projective plane curve
to exist based on a heavily study of the failure of the Seiberg-Witten invariant
conjecture of the corresponding SIS singularities.

Since the class of SIS singularities continue being useful we have decided
to write down this survey, dedicated to our friend Gert-Martin, where we
present known results and open problems on SIS singularities.

1 Superisolated Surface Singularities

1.1 Isolated Hypersurface Singularities

Let f : (Cn+1
, 0)→ (C, 0) be an analytic function and the corresponding germ

(V, 0) := (f−1(0), 0) ⊂ (Cn+1
, 0) of a hypersurface singularity. The Milnor

fibration of the holomorphic function f at 0 is the C∞ locally trivial fibration
f | : B

ε
(0) ∩ f

−1(D∗
η
)→ D∗

η
, where B

ε
(0) is the open ball of radius ε centered

at 0, D
η

= {z ∈ C : |z| < η} and D∗
η

is the open punctured disk (0 < η � ε

and ε small enough). Milnor’s classical result also shows that the topology of
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the germ (V, 0) in (Cn+1
, 0) is determined by the pair (S2n+1

ε
, L

2n−1

V
), where

S2n+1 = ∂B
ε
(0) and L

2n−1

V
:= S

2n+1

ε
∩ V is the link of the singularity.

Any fiber F
f,0 of the Milnor fibration is called the Milnor fiber of f

at 0. The monodromy transformation h : F
f,0 → F

f,0 is the well-defined
(up to isotopy) diffeomorphism of F

f,0 induced by a small loop around 0 ∈
D

η
. The complex algebraic monodromy of f at 0 is the corresponding linear

transformation h∗ : H∗(Ff,0, C)→ H∗(Ff,0, C) on the homology groups.
If (V, 0) defines a germ of isolated hypersurface singularity then we have

that H̃
j
(F

f,0, C) = 0 but for j = n. In particular the non-trivial complex
algebraic monodromy will be denoted by h : H

n
(F

f,0, C) → H
n
(F

f,0, C) and
∆

V
(t) will denote its characteristic polynomial. The Monodromy Theorem

describes the main properties of the monodromy operator, see for instance
the references in [19]:

(a) ∆
V
(t) is a product of cyclotomic polynomials.

(b) Let N be the maximal size of the Jordan blocks of h, then N ≤ n + 1.

(c) Let N1 be the maximal size of the Jordan blocks of h for the eigenvalue
1, then N1 ≤ n.

1.2 Normal Surface Singularities

Let (V, 0) = ({f1 = . . . = f
m

= 0}, 0) ⊂ (CN
, 0) be a normal surface singular-

ity with link L
V
. One of the main problems is to determine which analytical

properties of (V, 0) can be read from the topology of the singularity, see the
very nice survey paper by A. Némethi [55]. Since V ∩ B

ε
is a cone over the

link then L
V

characterizes the topological type of (V, 0).
The resolution graph Γ(π) of a resolution π : Ṽ → V allows to relate an-

alytical and topological properties of V . Via plumbing construction, W. Neu-
mann [61] proved that the information carried in any resolution graph is the
same as the information carried by the link L

V
. Let π : Ṽ → V be a good

resolution of the singular point 0 ∈ V . Good means that E = π−1(0) is a
normal crossing divisor. Let Γ(π) be the dual graph of the resolution (each
vertex decorated with the genus g(E

i
) and the self-intersection E

2

i
of E

i
in Ṽ ).

Mumford proved that the intersection matrix I = (E
i
· E

j
) is negative defi-

nite and Grauert proved the converse, i.e., any such graph corresponds to the
link of a normal surface singularity.

1.3 Superisolated Surface Singularities

Definition 1.1. A hypersurface surface singularity (V, 0) ⊂ (C3
, 0) defined as

the zero locus of f = f
d
+f

d+1 + · · · ∈ C{x, y, z} (where f
j

is homogeneous of
degree j) is superisolated, SIS for short, if the singular points of the complex
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projective plane curve C := {f
d

= 0} ⊂ P2 are not situated on the projective
curve {f

d+1 = 0}, that is Sing(C) ∩ {f
d+1 = 0} = ∅ in P2

. Note that C must
be a reduced curve.

The SIS singularities were introduced by I. Luengo in [45] to study the µ-
constant stratum, see Section 2. The main idea is that for a SIS singularity
(V, 0), the embedded topological type (and the equisingular type) of (V, 0)
does not depend on the choice of f

j
’s (for j > d, as long as f

d+1 satisfies the
above requirement), e.g. one can take f

j
= 0 for any j > d+1 and f

d+1 = l
d+1

where l is a linear form not vanishing at the singular points [46].

The minimal resolution. Let π : Ṽ → V be the monoidal transformation
centered at the maximal ideal m ⊂ O

V
of the local ring of V at 0. Then

(V, 0) is a SIS singularity if and only if Ṽ is a non-singular surface. Thus π

is the minimal resolution of (V, 0). To construct the resolution graph Γ(π)
consider C = D1 + . . . + D

r
the decomposition in irreducible components

of the reduced curve C in P2
. Let d

i
be the degree of the curve D

i
in P2

.

Then π−1(0) ∼= C = D1 + . . . + D
r

and the self-intersection of D
i

in Ṽ is
D

i
·D

i
= −d

i
(d−d

i
+1), [45, Lemma 3]. Since the link L

V
can be identified with

the boundary of a regular neighbourhood of π−1(0) in Ṽ then the topology
of the tangent cone determines the topology of the abstract link L

V
[45].

The minimal good resolution of (V, 0) is obtained from π by doing
the minimal embedded resolution of each plane curve singularity (C, P ) ⊂
(P2

, P ), P ∈ Sing(C), which is not an ordinary double point whose branches
belong to different global irreducible components. Let D

j
be an irreducible

component of C such that P ∈ D
j

and with multiplicity n ≥ 1 at P . After
blowing-up at P , the new self-intersection of the (strict transform of the)
curve D

j
in the (strict transform of the) surface Ṽ is D

2

j
− n

2
. In this way

one constructs the minimal good resolution graph Γ of (V, 0).
In particular the theory of hypersurface superisolated surface singularities

“contains” in a canonical way the theory of complex projective plane curves.

Example 1.2. Let f = f5 + z
6 be given by the equation f5 = z(yz − x

2)2
−

2xy2(yz− x
2) + y

5. The curve C is irreducible with unique singularity at [0 :
0 : 1] (of type A12). The minimal good resolution graph Γ of the superisolated
singularity (V, 0) is

−2 −2 −2
Γ :

−2 −2 −3 −1 −31

−2

Here all the curves have genus zero.

The embedded resolution. In [1], the first author studied the Mixed Hodge
Structure of the cohomology of the Milnor fibre of a SIS singularity. For that,
he constructed in an effective way an embedded resolution of a SIS singularity.
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The germ (V, 0) ⊂ (C3
, 0) is an isolated surface singularity. Hence,

H0(F, C) and H2(F, C) are the only non-vanishing homology vector spaces
on which the monodromy acts (we denote the Milnor fiber by F ). The only
eigenvalue of the action of the monodromy on H0(F, C) is equal to 1. The
Jordan form of the complex monodromy on H2(F, C) is computed for a SIS
singularity. Let ∆

V
(t) be the corresponding characteristic polynomial of the

complex monodromy on H2(F, C). Denote by µ(V, 0) = deg(∆
V
(t)) the Mil-

nor number of (V, 0) ⊂ (C3
, 0).

Let ∆P (t) be the characteristic polynomial (or Alexander polynomial)
of the action of the complex monodromy of the germ (C, P ) on H1(Fg

P , C),
(where gP is a local equation of C at P and F

g
P denotes the corresponding

Milnor fiber). Let µ
P be the Milnor number of g

P at P .
Let H be a C-vector space and ϕ : H → H an endomorphism of H. The

i-th Jordan polynomial of ϕ, denoted by ∆
i
(t), is the monic polynomial such

that for each ζ ∈ C, the multiplicity of ζ as a root of ∆
i
(t) is equal to the

number of Jordan blocks of size i + 1 with eigenvalue equal to ζ.
Let ∆1(t) and ∆2(t) be the first and the second Jordan polynomials

of the complex monodromy on H2(F, C) of V and let ∆P

1
(t) be the first

Jordan polynomial of the complex monodromy of the local plane singularity
(C, P ). After the Monodromy Theorem these polynomials joint with ∆

V
(t)

and ∆P (t), P ∈ Sing(C), determine the corresponding Jordan form of the
complex monodromy. The Alexander polynomial ∆

C
(t) of the projective plane

curve C ⊂ P2 was introduced by A. Libgober [37, 38] and F. Loeser and
M. Vaquié [42].

Theorem 1.3 ([1]). Let (V, 0) be a SIS singularity whose tangent cone C has

r irreducible components. Then the Jordan form of the complex monodromy

on H2(F, C) is determined by the following polynomials

(i) The characteristic polynomial ∆V
(t) is equal to

∆
V
(t) =

(td − 1)χ(P2\C)

(t− 1)

∏

P∈Sing(C)

∆P (td+1).

(ii) The first Jordan polynomial is equal to

∆1(t) =
1

∆
C
(t)(t− 1)r−1

∏

P∈Sing(C)

∆P

1
(td+1)∆P

(d)
(t)

∆P

1,(d)
(t)3

,

where

∆P

(d)
(t) := gcd(∆P (t), (td−1)µ

P

) and ∆P

1,(d)
(t) := gcd(∆P

1
(t), (td−1)µ

P

).
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(iii) The second Jordan polynomial is equal to

∆2(t) =
∏

P∈Sing(C)

∆P

1,(d)
(t).

The first part of the theorem was stated by J. Stevens in [79]. A general
formula for the zeta function of the monodromy was proved by D. Siersma
[76] (see also [51],[28]). In particular the Milnor number µ(V, 0) of a SIS
singularity verifies the identity

µ(V, 0) = (d− 1)3 +
∑

P∈Sing C

µ
P

.

Yomdin Singularities, Series of Singularities and Spectrum.

The first natural generalization of superislolated singularities are Yomdin
singularities, where d + 1 is replaced by d + k.

Let (V, 0) ⊂ (Cn+1
, 0) be the germ of hypersurface defined by f = 0,

f = f
d
+f

d+k
+ . . . ∈ C{x0, . . . , xn

}. The singularity (V, 0) is called of Yomdin

type if Sing({f
d

= 0}) ∩ {f
d+k

= 0} = ∅ in Pn.
For each P ∈ Sing({f

d
= 0}), let g

P be a local equation of {f
d

= 0} ⊂ Pn

at P . Formulæ for the Milnor number (see [92, 35, 46]) and for the zeta
function ζ

f
(t) of the complex monodromy can be written as follows [79, 76,

28, 51]:

µ(V, 0) = (d− 1)n+1 + k

∑

P∈Sing{fd=0}

µ
P

,

and

ζ
f
(t) = (1− t

d)χ(Pn\{fd=0})





∏

P∈Sing{fd=0}

(1− t
d+k)(ζP

g
)k(td+k)





−1

.

Here, (ζP

g
)k(t) is the monodromy zeta function of the k-power of the corre-

sponding monodromy ζP

g
(t) of g at P.

Let H be a hyperplane such that Sing({f
d

= 0}) ∩H = ∅, H being the
zero locus of a linear form g. Then the family

F (x0, . . . , xn
, t) = f

d
+ (1− t)(f − f

d
) + tg

d+k

is a µ-constant family (in fact a µ
∗-constant family), see [46]. It means that

to study properties of Yomdin type singularities which are preserved under
µ-constant deformations is equivalent to study series of singularities of type
f

d
+ g

d+k. Notice that in such a case the singular locus of f
d

is 1-dimensional.
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Let f be a germ of an analytic function at zero whose singular locus is 1-
dimensional. Let g be a generic linear function such that g(0) = 0. Y. Yomdin
[92] compared the vanishing cohomologies of their Milnor fibres (and then its
Milnor numbers) of f and f +gN , for N big enough. Later on D. Siersma [76]
compared the zeta functions of their monodromies. Finally it was J. Steen-
brink [78] who conjectured a relationship between the spectrum Sp(f, 0) of
f and the spectrum Sp(f + gN

, 0) of f + g
N . This conjecture was proved

by M. Saito [74] using his theory of mixed Hodge modules. Another proof
has been given by A. Némethi and J. Steenbrink, [59]. Recently G. Guibert,
F. Loeser and M. Merle [27] have proved Steenbrink’s conjecture without any
condition on the singular locus of f and g being any function vanishing at 0.

The notion of a spectrum Sp(f, x) at x of a function f on a smooth
complex algebraic variety was introduced by J. Steenbrink in [77] and by
A. Varchenko in [84]. It is a fractional Laurent polynomial

∑

α∈Q
n

α
t
α, n

α
∈ Z

defined using the semi-simple part of the action of the monodromy on the
mixed Hodge structure on the cohomology of the Milnor fibre of f at x. Here
we use the convention given by M. Saito in [74] (denoted by Sp′(f, x)) which
differs from that in [78] by multiplication by t (see Remark 2.3 in [74]).

Let f = f
d
+ f

d+k
+ . . . ∈ C{x0, . . . , xn

} define a Yomdin type singularity
(V, 0) ⊂ (Cn+1

, 0) and, for each P ∈ Sing({f
d

= 0}), let g
P be a local equation

of {f
d

= 0} ⊂ Pn at P. Since the spectrum does not change under µ-constant
deformations, see [82, 83], then the spectrum Sp(f, 0) of (V, 0) can be com-
puted via [78, Theorem 6.1] and [74, Theorem 5.7] in terms of the spectral
numbers (also called exponents) {αP

i
}

P
of g

P at P .

Theorem 1.4 ([46, 74, 78]). With the previous notations, the spectrum

Sp(f, 0) of a Yomdin singularity (V, 0) ⊂ (Cn+1
, 0) defined by f = f

d
+f

d+k
+

. . . ∈ C{x0, . . . , xn
} is equal to

Sp(f, 0) =

(

t
1/d
− t

1− t1/d

)n

−

(

1− t

1− t1/d

)

∑

P∈Sing(C)

∑

α
P
i
∈Sp(gP

,P )

t
β

P
i

+

(

1− t

1− t1/(d+k)

)

∑

P∈Sing(C)

∑

α
P
i ∈Sp(gP

,P )

t
γ

P,k
i ,

where γ
P,k

i
:=

kα
P

i
+ bd(αP

i
− 1)c+ d + 1

d + k
and βP

i
:=
bd(αP

i
− 1)c+ d + 1

d
.

The study of non-isolated singularities defined by an analytic complex func-
tion f using perturbation f + gk, g a generic linear form, has been exten-
sively studied mostly using polar methods, Lê cycles and other methods, see
[48, 49, 80] and references therein.
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2 Deformations

Let p : V → T be a deformation of a SIS singularity (V, 0) ⊂ (C3
, 0) with

a section σ such that (V
t
, σ(t)) is an isolated singularity (one may as-

sume that T is one-dimensional and smooth). In general (V
t
, σ(t)) is not

a SIS singularity but if the corresponding multiplicities coincides, that is
mult(V

t
, σ(t)) = mult(V, 0), then (V

t
, σ(t)) is a SIS singularity, because one

can take local coordinates such that F (x, y, z, t) = 0 is the equation of
(V, 0) ⊂ (C3

× C, 0), σ(t) = (0, t), and F
d
(x, y, z, t) = 0 gives the tangent cone

of (V
t
, σ(t)) for all t. Thus p induces a deformation P : C → T of the tangent

cone C ⊂ P2 and since the condition of being a SIS singularity is open then
Sing(C

t
) ∩ {f

d+1,t
= 0) = ∅ for t close to 0.

Assume now that p is a µ-constant deformation, that is µ(V
t
, σ(t)) =

µ(V, 0) along the family. Even in this case it is not known that the multiplicity
is constant. In fact the following well-known problems are still open also for
SIS singularities.

Problem 2.1. Let p : V → T be a deformation of a SIS singularity (V, 0) ⊂
(C3

, 0) such that µ(V
t
, σ(t)) = µ(V, 0). Is it true that the multiplicity is con-

stant?

Problem 2.2. Let p : V → T be a deformation of a SIS singularity (V, 0) ⊂
(C3

, 0) such that µ(V
t
, σ(t)) = µ(V, 0). Is it a topologically constant deforma-

tion?

In [45, Theorem 1], the second author gives an affirmative answer for Prob-
lem 2.1 using B. Perron results (see [70]) whose proof turned out to be in-
complete. By putting together [45, Theorem 2] and the correct part of [45,
Theorem 1] one gets:

Theorem 2.3. Let p : V → T be a deformation of a SIS singularity (V, 0) ⊂
(C3

, 0). Then the following conditions are equivalent:

(a) (V, 0) is topologically equivalent to (V
t
, σ(t)),

(b) µ(V
t
, σ(t)) = µ(V, 0) and mult(V

t
, σ(t)) = mult(V, 0),

(c) the family {(V
t
, σ(t))}

t
is µ

∗-constant,

(d) mult(V
t
, σ(t)) = mult(V, 0) and the induced deformation P : C → T of

the tangent cone C ⊂ P2 of (V, 0) is equisingular.

In [44], it was shown how to compute, in an effective way, equations for the
equisingularity stratum Σ

C
of C in the family of all projective plane curves of

degree d, giving examples in which Σ
C

is not smooth. Thus if one considers
the SIS singularity with such tangent cone, then one gets that the µ∗-constant
stratum in the versal deformation is not smooth.
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The simplest example is f = y(xy
3 + z

4)2 + x
9 + y

10. Then C has only
one singular point with an A35 singularity, and Σ

C
is singular. J. Stevens [79]

using the V -filtration proved that the µ∗-constant stratum is a component of
the µ-constant stratum giving the non-smoothness of the µ-constant stratum.

The nice construction by V. A. Vasil’iev and V.V. Serganova in [85], us-
ing matroids, gives another examples with non-smooth µ∗-constant stratum.
The study of the properties of the equisingularity stratum Σ

C
of curves is a

classical subject which gained a great impulse with the work of Gert-Martin
Greuel, Ch. Lossen and E. Shustin. See [25] for a detailed account of the
subject and references.

Let (V, 0) ⊂ (C3
, 0) be an isolated surface singularity. B. Teissier asked

whether (V, 0) can be put in a µ∗-constant family such that there exists a
member of the family which is defined over Q (resp. R). Using SIS singularities
one can answer negatively to this question. Namely, it is known that there are
many curves C ⊂ P2 such that no element of the equisingularity stratum Σ

C

can be defined over Q (or R), see [93] and the end of next section. For such
a curve not defined over R see [4]. If one takes a SIS singularity over such
a curve, Theorem 2.3 gives us that no member of a µ∗-constant deformation
can be defined over Q (or R).

3 Zariski Pairs

Let us consider C ⊂ P2 a reduced projective curve of degree d defined by an
equation f

d
(x, y, z) = 0. If (V, 0) ⊂ (C3

, 0) is a SIS singularity with tangent
cone C, then the link L

V
of the singularity is completely determined by C.

Let us recall, that L
V

is a Waldhausen manifold and its plumbing graph is
the dual graph of the good minimal resolution. In order to determine L

V
we

do not need the embedding of C in P2, but only its embedding in a regular
neighborhood. The needed data can be encoded in a combinatorial way.

Definition 3.1. Let Irr(C) be the set of irreducible components of C. For
P ∈ Sing(C), let B(P ) be the set of local irreducible components of C. The
combinatorial type of C is given by:

• A mapping deg : Irr(C) → Z, given by the degrees of the irreducible
components of C.

• A mapping top : Sing(C) → Top, where Top is the set of topological
types of singular points. The image of a singular point is its topological
type.

• For each P ∈ Sing(C), a mapping β
P

: T (P ) → Irr(C) such that if γ

is a branch of C at P , then β
P
(γ) is the global irreducible component

containing γ.
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Remark 3.2. There is a natural notion of isomorphism of combinatorial
types. It is easily seen that combinatorial type determines and is deter-
mined by any of the following graphs (with vertices decorated with self-
intersections):

• The dual graph of the preimage of C by the minimal resolution of
Sing′(C). The set Sing′(C) is obtained from Sing(C) by forgetting ordi-
nary double points whose branches belong to distinct global irreducible
components. We need to mark in the graph the r vertices corresponding
to Irr(C).

• The dual graph of the minimal good minimal of V . Since the minimal
resolution is unique, it is not necessary to mark vertices.

Note also that the combinatorial type determine the Alexander polynomial
∆

V
(t) of V (see Theorem 1.3).

Definition 3.3. A Zariski pair is a set of two curves C1, C2 ⊂ P2 with
the same combinatorial type but such that (P2

, C1) is not homeomorphic to
(P2

, C2). An Alexander-Zariski pair {C1, C2} is a Zariski pair such that the
Alexander polynomials of C1 and C2 do not coincide.

In [1], (see here Theorem 1.3) it is shown that Jordan form of complex mon-
odromy of a SIS singularity is determined by the combinatorial type and
the Alexander polynomial of its tangent cone. The first example of Zariski
pair was given by Zariski, [94, 95]; there exist sextic curves with six ordinary
cusps. If these cusps are (resp. not) in a conic then the Alexander polynomial
equals t2 − t + 1 (resp. 1). Then, it gives an Alexander-Zariski pairs. Many
other examples of Alexander-Zariski pairs have been constructed (Artal,[2],
Degtyarev [13]). We state the main result in [1].

Theorem 3.4. Let V1, V2 be two SIS singularities such that their tangent

cones form an Alexander-Zariski pair. Then V1 and V2 have the same abstract

topology and characteristic polynomial of the monodromy but not the same

embedded topology.

Recall that the Jordan form of the monodromy is an invariant of the embedded
topology of a SIS singularity (see Theorem 1.3); since it depends on the
Alexander polynomial ∆

C
(t) of the tangent cone, we deduce this theorem.

Remark 3.5. Every SIS singularity of Theorem 3.4 provides a counter-
example to a Conjecture by S.S.T Yau stated in [91]: abstract topology and

characteristic polynomial of the monodromy determine embedded topology.

There are also examples of Zariski pairs which are not Alexander-Zariski
pairs (see [68, 3, 5]). Some of them are distinguished by the so-called char-
acteristic varieties introduced by Libgober [39]. These are subtori of (C∗)r,
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r := # Irr(C), which measure the excess of Betti numbers of finite Abelian
coverings of the plane ramified on the curve (as Alexander polynomial does
it for cyclic coverings).

Problem 3.6. How can one translate characteristic varieties of a projective
curve in terms of invariants of the SIS singularity associated to it?

Though Alexander polynomial and characteristic varieties are topological in-
variants, they are in fact arithmetic invariants in the following sense. Let us
suppose that a curve C is defined by a polynomial with coefficients in a num-
ber field K; then Alexander polynomial and characteristic varieties can be
computed inside K, i.e., they do not depend on the embedding K ↪→ C.

Definition 3.7. An arithmetic Zariski pair is a Zariski pair such that its
elements are defined with coefficients in a number field and with conjugate
equations by the action of a Galois element.

The existence of arithmetic Zariski pairs is a consequence of a work of
Serre [75] and Chisini’s conjecture [33]. Explicit examples have been found
in [4]; moreover, there are a lot of candidates to be arithmetic Zariski pairs, for
example, sextic curves with an A19 singularity (discovered by Yoshihara [93]).

Problem 3.8. Let C1, C2 be an arithmetic Zariski pair and let V1, V2 SIS
singularities such that C1, C2 are their respective tangent cones. Do they
have the same embedded topological type?

4 Monodromy Conjecture

Let f : (Cn+1
, 0)→ (C, 0) be a germ of a holomorphic function and let

(V, 0) := (f−1(0), 0) ⊂ (Cn+1
, 0)

be the germ of hypersurface singularity defined by the zero locus of f .

Let π : (Y,D)→ (Cn+1
, 0) be an embedded resolution of (V, 0), that is, a

proper analytic map on a non-singular complex manifold Y such that:

(1) the analytic subspace D := π
−1(0) of Y is the union of non-singular

n-dimensional manifolds in Y which are in general position;

(2) the map π|
Y \D is an analytic isomorphism: Y \ D → Cn+1

\ 0;

(3) in a neighbourhood of any point of D there exist a local system of coor-
dinates y0, . . . , yn

such that f ◦ π(y0, . . . , yn
) = y

N0

0
· · · y

Nn
n

.



24. E. Artal Bartolo, I. Luengo, A. Melle Hernández

Let E
i
, i ∈ I, be the irreducible components of the divisor π

−1(f−1(0)). For
each subset J ⊂ I we set

E
J

:=
⋂

j∈J

E
j
, and Ě

J
:= E

J
\

⋃

j /∈J

E
J∪{j}.

For each j ∈ I, let us denote by N
j

the multiplicity of E
j

in the divisor of
f ◦ π and by ν

j
− 1 the multiplicity of E

j
in the divisor of π

∗(ω) where ω is
a non-vanishing holomorphic (n + 1)-form in Cn+1.

The invariant we are interested in is the local topological zeta function

Z
top,0(f, s) ∈ Q(s), which is an analytic (but not topological, see [6]) subtle

invariant associated with any germ of an analytic function f : (Cn+1
, 0) →

(C, 0). This rational function was first introduced by J. Denef and F. Loeser
as a sort of limit of the p-adic Igusa zeta function, see [15, 16]. The original
definition was written in terms of an embedded resolution of its zero locus
germ (V, 0) ⊂ (Cn+1

, 0) (although it does not depend on any particular resolu-
tion). In [16], J. Denef and F. Loeser gave an intrinsic definition of Z

top,0(f, s)
using arc spaces and the motivic Igusa zeta function, – see also [17] and the
Séminaire Bourbaki talk of E. Looijenga [43].

The local topological zeta function of f is:

Z
top,0(f, s) :=

∑

J⊂I

χ(Ě
J
∩ π

−1(0))
∏

j∈J

1

ν
j
+ N

j
s
∈ Q(s),

where χ denotes the Euler-Poincaré characteristic. Each exceptional divisor
E

j
of an embedded resolution π : (Y,D)→ (Cn+1

, 0) of the germ (V, 0) gives a
candidate pole −ν

j
/N

j
of the rational function Z

top,0(f, s). Nevertheless only
a few of them give an actual pole of Z

top,0(f, s). There are several conjectures
related to the topological zeta functions. We focus our attention in the Mo-

nodromy Conjecture, see [14, 15].

Conjecture 4.1 (Local Monodromy). If s0 is a pole of the topological zeta

function Z
top,0(f, s) of the local singularity defined by f , then exp(2iπs0) is

an eigenvalue of the local monodromy at some complex point of f−1(0).

If f defines an isolated hypersurface singularity, then exp(2iπs0) has to be an
eigenvalue of the complex algebraic monodromy of the germ (f−1(0), 0).

There are three general problems to consider when trying to prove (or
disprove) the conjecture using resolution of singularities:

(i) Explicit computation of an embedded resolution of the hypersurface
(V, 0) ⊂ (Cn+1

, 0).

(ii) Determination of the poles {−ν
j
/N

j
} of Z

top,0(f, s).
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(iii) Explicit computation of the eigenvalues of the complex algebraic mon-
odromy (or computing the characteristic polynomials of the correspond-
ing action of the complex algebraic monodromy) in terms of the resolu-
tion data.

The Monodromy Conjecture, which was first stated for the Igusa zeta func-
tion, has been proved for curve singularities by F. Loeser [40]. F. Loeser
actually proved a stronger version of the Monodromy Conjecture: any pole

of the topological zeta function gives a root of the Bernstein polynomial of

the singularity. The behaviour of the topological zeta function for germs
of curves is rather well understood once an explicit embedded resolution
π : (Y,D)→ (C2

, 0) of curve singularities is known, e.g. the minimal one.
Basically, the poles are the {−ν

j
/N

j
} coming from rupture components in

the minimal resolution, see the proof by Veys [86, 87] . The case of curves
was proved in consecutive works by Strauss, Meuser, Igusa and Loeser for
Igusa’s local zeta function, but the same proof works for the topological zeta
function. There are other recent proofs of the conjecture for the case of curves
by Cassou-Noguès and the authors [8], Nicaise [67] and Rodrigues [72].

There are other classes of singularities where the embedded resolution is
known. For example, for any singularity of hypersurface defined by an ana-
lytic function which is non-degenerated with respect to its Newton polytope,
problems (i) and (iii) above are solved. Nevertheless, (ii) seems to be a hard
combinatorial problem. This problem was partially solved by Loeser in the
case where f has a non-degenerate Newton polytope and satisfies certain
extra technical conditions, – [41].

Even in one of the simplest cases where f has non-isolated singulari-
ties, namely the cone over a curve, problems (i) and (iii) are solved, but (ii)
presents serious difficulties. B. Rodrigues and W. Veys proved in [73] the
Monodromy Conjecture for any homogeneous polynomial f

d
∈ C[x1, x2, x3]

satisfying χ(P2
\ {f

d
= 0}) 6= 0. In [7] the authors complete the proof of

this case studying homogeneous polynomials f
d
∈ C[x1, x2, x3] satisfying

χ(P2
\ {f

d
= 0}) = 0.

As we mentioned before, an embedded resolution is also known for su-
perisolated surface singularities, – see [1]. This allow Pi. Cassou-Noguès and
the authors to solve problems (ii) and (iii) for SIS singularities, namely the
main result of [7] is to prove:

Theorem 4.2 ([7]). The local Monodromy Conjecture is true for superiso-

lated surface singularities.

The local topological zeta function of a SIS singularity satisfies the following
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equality, see [7, Corollary 1.12]:

Z
top,0(V, s) =

χ(P2
\ C)

t− s
+

χ(Č)

(t− s)(s + 1)
+

+
∑

P∈Sing(C)

(

1

t
+ (t + 1)

(

1

(t− s)(s + 1)
−

1

t

)

Z
top,P

(gP

, t)

)

,

where g
P is a local equation of C at P , Č := C \Sing(C) and t := 3+(d+1)s.

The following properties can be easily described from the previous equalities:

Proposition 4.3. Let P be the set of poles of Ztop,0(V, s).

(i) P ⊂ {−1,− 3

d
} ∪

⋃

P∈Sing(C)

{

−
3 + t0

(d + 1)

∣

∣

∣

∣

t0 pole of Z
top,P

(gP
, t)

}

.

(ii) If −3

d
6= s0 ∈ P then exp(2iπs0) is an eigenvalue of the complex algebraic

monodromy of V .

(iii) Let s0 = −3

d
. If s0 is a pole of Z

top,P
(C, s) at some point P ∈ Sing(C)

and either χ(P2
\ C) > 0 or χ(P2

\ C) = 0, then exp(2iπs0) is an eigen-

value of the complex algebraic monodromy of V .

(iv) If s0 = −3

d
is a multiple pole of Z

top,0(V, s) then exp(2iπs0) is an eigen-

value of the local algebraic monodromy at some singular point of C.

(v) If s0 = −3

d
is not a pole of Z

top,P
(C, s), the residue of Z

top,0(V, s) at −3

d

equals dρ(C) where

ρ(C) := χ(P2
\ C) + χ(Č)

d

d− 3
+

∑

P∈Sing(C)

Z
top,P

(

C,−
3

d

)

.

Following Proposition 4.3, the Monodromy Conjecture for SIS singularities is
proved in all but two cases:

(N-1) χ(P2
\ C) = 0, s0 = −3

d
is not a pole for the local topological zeta

function at any singular point in C and ρ(C) 6= 0.

(N-2) χ(P2
\ C) < 0.

The bad divisors are the degree d effective divisor D on P2 (d > 3) such that
χ(P2

\ D) ≤ 0 and s0 = −3

d
is not a pole of Z

top,P
(gP

D
, s), for any singular

point P in its support D
red

, where g
P

D
is the local equation of the divisor D

at P. The main part of [7, §2] is devoted to determine the bad divisors D on
P2 such that ρ(D) 6= 0 and finally to prove the Monodromy Conjecture.
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Note that the Euler-Poincaré characteristic condition on a bad divisor
D implies that D has at least two irreducible components, all of them ra-
tional curves, see [31, 30, 32, 9]. In fact, the main result in [7] can be used
to study arrangements C = C1 + . . . + C

s
of rational plane curves such that

χ(P2
\ C) ≤ 0. In particular, some necessary conditions on the combinatorial

type of C (see Section 3) are obtained in order to the curve C exists.
The authors and S.M. Gusein-Zade have computed in an unpublished

work the topological zeta function for Yomdin surface singularities, obtaining
also a similar formula to the one for SIS singularities.

To avoid problems (i) and (ii) one can compute the so called motivic Igusa
zeta function using motivic integration. In particular Pi. Cassou-Noguès and
the authors in [8] have verified the conjecture (even the original conjecture
by Igusa) for quasi-ordinary hypersurface singularities in arbitrary dimension
measuring arcs and using Newton maps [8].

5 SIS Singularities with Rational Homology

Sphere Links and Rational Cuspidal Curves

Superisolated surface singularities can be used to construct normal surface
singularities whose link are rational homology spheres.

Let (V, 0) = ({f1 = . . . = f
m

= 0}, 0) ⊂ (CN
, 0) be a normal surface

singularity with link L
V
. One of the main problems is to determine which

analytical properties of (V, 0) can be read from the topology of the singularity,
see [55]. Let π : Ṽ → V be a resolution of V .

The link L
V

is called a rational homology sphere (QHS) if H1(LV
, Q) =

{0}, and L
V

is called an integer homology sphere (ZHS) if H1(LV
, Z) = {0}. In

general the first Betti number b1(LV
) = b1(Γ(π))+2

∑

i
g(E

i
), where b1(Γ(π))

is the number of independent cycles of the graph. In fact L
V

is a QHS if and
only if Γ(π) is a tree and every E

i
is a rational curve. If additionally the

intersection matrix has determinant ±1 then L
V

is an ZHS.

Example 5.1. If (V, 0) ⊂ (C3
, 0) is a SIS singularity with an irreducible

tangent cone C ⊂ P2 then L
V

is a rational homology sphere if and only if C

is a rational curve and each of its singularities (C, p) is locally irreducible, i.e
a cusp.

In [47] A. Némethi and the last two authors have used SIS singularities whose
link is a rational homology sphere to disprove several conjectures made during
last years, see loc. cit. for a series of counterexamples. In Example 5.2 we
present one of them.

For instance, it is shown that in the QHS link case the geometric genus
p

g
(analytical property of (V, 0)) does not depend only on its link L

V
, even
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if we work only with Gorenstein singularities (cf. [62, Question 3.2], see also
[55, Problem 9.2]). Moreover for Q-Gorenstein singularities (with b1(LV

) =
0) analytical properties like the multiplicity, embedded dimension, Hilbert-
Samuel function are not topological properties.

It is also shown that the universal abelian cover conjecture by Neumann
and Wahl in [64] did not held with the generality they stated it. The starting
point of the conjecture was Neumann’s result [60] that the universal abelian
cover of a singularity with a good C∗-action and with b1(LV

) = 0 is a Brieskorn
complete intersection whose weights can be determined from the Seifert in-
variants of the link. Their original conjecture was:

Assume that (V, 0) is Q-Gorenstein singularity satisfying b1(LV
) = 0.

Then there exists an equisingular and equivariant deformation of the uni-

versal abelian cover of (V, 0) to an isolated complete intersection singularity.

Moreover, the equations of this complete intersection, together with the action

of H1(LV
, Z), can be recovered from L

V
via the “splice equations”.

The semigroup condition as stated in [64] does not hold in general. Thus
Neumann and Wahl restrict themselves to a very interesting class of complete
intersection normal complex surface singularities called splice type singular-

ities, see [65, 66]. In [66] the authors conjectured that rational singularities
and QHS link minimally elliptic singularities belong to the class of splice type

singularities. Just recently T. Okuma in [69] has given a proof of this result.
See the paper by J. Wahl [89] in these proceedings.

Another conjecture that was disproved in [47] was the Seiberg-Witten
invariant conjecture (SWC). A. Némethi and L. Nicolaescu [56] offered a can-
didate as a topological bound for the geometric genus of a rational homology
sphere link of a normal normal surface singularity: Let L

V
be the link of a

normal surface singularity.

(a) If L
V

is a rational homology sphere then

p
g
≤ sw(L

V
)− (Z2

K
+ s)/8.

(b) Additionally, if the singularity is Q-Gorenstein, then in (a) the equality

holds.

Here Z
K

is the canonical cycle associated with Γ(π), and s the number of
vertices in Γ(π) . Then Z2

K
+ s does not depend on the choice of Γ(π), it is a

topological invariant of L
V
. Set H := H1(LV

, Z).
The Seiberg-Witten invariant sw(LV

) of the link L
V

(associated with the
canonical spinc structure) is

sw(LV
) := −

λ(L
V
)

|H|
+ T (L

V
),
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where T (M) is the sign-refined Reidemeister-Turaev torsion T (M) (associ-
ated with the canonical spinc structure) [81] and λ(L

V
) is the normalized

by the Casson-Walker invariant, using the convention of [36] (cf. also with
[56, 57, 58, 55]). Both invariants T (L

V
) and λ(L

V
) can be determined from

the graph (for details, see [56] or [55]).
The SWC-conjecture was verified by Némethi and Nicolaescu for quotient

singularities [56], for singularities with good C∗-actions [57] and hypersurface
suspension singularities g(u, v) + wn with g irreducible [58].

Let (V, 0) ⊂ (C3
, 0) be a SIS singularity whose tangent cone C ⊂ P2 is an

irreducible rational cuspidal curve (each singularity of C is locally irreducible).
We denote by ∆P the characteristic polynomial of (C, P ) ⊂ (P2

, P ), set
∆(t) :=

∏

P∈Sing(C)

∆P (t) and 2δ := deg ∆(t). By the rationality of C one has

(d− 1)(d− 2) = 2δ =
∑

P∈Sing(C)

µ
P

,

where δ is the sum of the delta-invariants of the germs (C, P ), P ∈ Sing(C).
The minimal resolution of V was described in Section 1. Since ∆P (1) = 1,

this implies that |H| = ∆
V
(1) = d. In fact, one can verify easily that H = Z

d
,

and a possible generator of H is an elementary loop in a transversal slice to
C.

The other invariants which are involved in the SWC can be computed
from the minimal resolution of V and using Laufer’s formula [34]:



















Z2

K
+ s = −(d− 1)(d2

− 3d + 1); p
g

= d(d− 1)(d− 2)/6; and

sw(L
V
) =

1

d

∑

ξ
d=16=ξ

∆(ξ)

(ξ − 1)2
+

1

2d
∆(t)′′(1)−

δ(6δ − 5)

12d
.

(1)

Example 5.2. Let us continue with Example 1.2. The link of such SIS sin-
gularity is a rational homology sphere because the curve C is irreducible,
rational and cuspidal. The plumbing graph is star-shaped, in particular it
can be realized by a weighted homogeneous singularity (V

w
, 0).

In this case, p
g
(V, 0) = 10 by the previous formula and p

g
(V

w
, 0) = 10

by Pinkham’s formula [71]. In particular, using [62] (3.3), (V, 0) is in an
equisingular deformation of (V

w
, 0). This deformation, found with the help

of J. Stevens, can be described as follows. The weights of the variables
(a, . . . , f, λ) are (62,26,30,28,93,91,-3):

V (λ) =







ab− c2
d = λf , bc− d

2 = λ
2
a , ad− c

3 = λe ,

be− df = −λac2
, de− cf = −λa

2
, af − c

2
e = −λb

6
,

e2 + a
3 + b

6
c = 0 , ef + a

2
c
2 + b

6
d = 0 , f

2 + ac
4 + b

7 = 0







.



30. E. Artal Bartolo, I. Luengo, A. Melle Hernández

Here, (V (0), 0) = (V
w
, 0) ⊂ (C6

, 0) is Gorenstein, but it is not a complete in-
tersection. Moreover, the two singularities (V, 0) and (V

w
, 0) have the same

topological types (the same graphs Γ), but their embedded dimensions are not

the same: they are 3 and 6 respectively. It is even more surprising that their

multiplicities are also different: mult(V, 0) = 5 and mult(V
w
, 0) = 6 (the sec-

ond computed by Singular [26]).
In [60] it was proved that the universal abelian cover (V ab

w
, 0) of (V

w
, 0)

is Σ(13, 31, 2), the Brieskorn hypersurface singularity {u13 + v
31 + w

2 = 0}.
The corresponding resolution graph Γab (of both (V ab

, 0) and (V ab

w
, 0)) is

Γab :
−7 −2 −2 −2 −2 −2 −2 −2 −5

−2

Even more, there is no equisingular deformation of the universal abelian cov-

ers. Both (V ab
, 0) and (V ab

w
, 0) have the same graph Γab but one can show

(see [47]) that (V ab
, 0) is not in the equisingular deformation of (V ab

w
, 0).

Thus, the only possible “splice equation” which defines (V ab
, 0) is (V ab

w
, 0)

but the universal abelian cover (V ab
, 0) is not in the equisingular deforma-

tion of (V ab

w
, 0). Therefore, the universal abelian cover conjecture is not true.

Moreover, one has two Gorenstein singularities (one of them is even a hyper-
surface Brieskorn singularity) with the same rational homology sphere link,
but with different geometric genus. This provides counterexample for both
SWC and geometric genus conjecture.

Looking at the identity (1), one considers now the (a priori) rational function

R(t) :=
1

d

∑

ξ
d=1

∆(ξt)

(1− ξt)2
−

1− td
2

(1− td)3
. (2)

J.F. Fernández de Bobadilla, A. Némethi and the last two authors in [20]
proved that R(t) ∈ Z[t] and it can be written as

R(t) =

d−3
∑

l=0

(

c
l
−

(l + 1)(l + 2)

2

)

t
d(d−3−l)

∈ Z[t]. (3)

Moreover

R(1) = sw(LV
)−

Z
2

K
+ s

8
− p

g
.

In particular, the (SWC) is equivalent to R(1) ≥ 0.
In fact it is rather curious that in all examples, based on SIS singularities,

studied in [47] one gets R(1) ≤ 0. Motivated by these examples, in [20]
there were worked out many examples discovering that the coefficients of
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R(t) are always non-positive. This gives strong necessary conditions on the
singularities of C. It is know that in the problem of classification of rational
cuspidal curves one of the key points is to find necessary conditions on the
singularities. We state this compatibility property on R(t) that we have found
as a conjecture.

Conjecture 5.3 ((CP) [20]). Let (C, p
i
)ν

i=1
be a collection of local plane

curve singularities, all of them locally irreducible, such that 2δ = (d−1)(d−2)
for some integer d. Then if (C, p

i
)ν

i=1
can be realized as the local singularities

of a degree d (automatically rational and cuspidal) projective plane curve of

degree d then

c
l
≤ (l + 1)(l + 2)/2 for all l = 0, . . . , d− 3. (∗

l
)

In fact the coefficients cl
can be compute from the polynomial Q(t) defined

in terms of ∆(t):

∆(t) = 1 + (t− 1)δ + (t− 1)2
Q(t) =

∑

l-d

b
l
t
l +

d−3
∑

l=0

c
l
t
(d−3−l)d

.

The main result in [20] is the proof of the following theorem:

Theorem 5.4. If the logarithmic Kodaira dimension κ̄ := κ̄(P2
\ C) is less

than 2, then (CP) is true. In fact, in all these cases c
l
= (l+1)(l+2)

2
for any

l = 0, . . . , d− 3.

Corollary 5.5 ([20]). Let f = f
d

+ f
d+1 + · · · : (C3

, 0) → (C, 0) be a

hypersurface superisolated singularity with κ̄(P2
\ {f

d
= 0}) < 2. Then the

Seiberg-Witten invariant conjecture is true for (V, 0) = ({f = 0}, 0).

It is even more interesting to study the compatibility property when ν = 1.
In this case one can prove that all the inequalities (∗

l
) are indeed identities.

These identities are equivalent (via a theorem by A. Campillo, F. Delgado and
S.M. Gusein-Zade in [12]) to a very remarkable distribution of the elements
of the semigroup Γ(C,P ) of the singularity (C, P ) in intervals of length d. It is
shown there that (CP ) in this case is equivalent to the following conjectural
identity:

∑

k∈Γ(C,P )

t
dk/de =

1− td

(1− t)2
= 1+2t+ · · ·+(d− 1)td−2 +d(td−1 + t

d + t
d+1 + · · · ).
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6 Final Remarks

6.1 Weighted-Yomdin Singularities

The second natural generalization of SIS singularities is obtained if one con-
siders a weighted version of this singularities.

Definition 6.1. Let ω := (p
x
, p

y
, p

z
) ∈ N3 be such that gcd(p

x
, p

y
, p

z
) = 1. A

polynomial f is ω-weighted homogeneous of degree d if

f(tpxx, t
pyy, t

pzz) = t
d

f(x, y, z) .

It then defines a curve in the weighted projective plane P2

ω
:= C3

\ {0}/ ∼,
(x, y, z) ∼ (tpxx, t

pyy, t
pzz) for all t ∈ C∗. If P ∈ P2

ω
, we define its order ν

P
as

the gcd of the weights of the non-zero coordinates of P .

Definition 6.2. If C ⊂ P2

ω
is a curve defined by a weighted homogeneous

polynomial f and P ∈ C we define the weighted Milnor number µω(C, P ) as
µ

νP
where µ is defined as follows; let us suppose that P is the equivalence class

of (x0, y0, 1) and consider the Milnor number of f(x, y, 1) = 0 at (x0, y0). A
singular point of C is a point such that µω(C, P ) > 0.

Let us consider a germ (W, 0) ⊂ (C3
, 0) defined by a power series g; let g =

g
d
+g

d+k
+ . . . be the weighted homogeneous decomposition of f with respect

to ω and let Cω

m
⊂ P2

ω
be the weighted projective locus of zeroes of g

m
.

Definition 6.3. We say that (W, 0) ⊂ (C3
, 0) is a weighted Yomdin singular-

ity with respect to ω if Sing(Cω) ∩ C
ω

d+k
= ∅.

In a forthcoming joint work with J. Fernández de Bobadilla, we will give a
proof of a formula which was suggested to us by C. Hertling.

Proposition 6.4. The Milnor number µ of a weighted Yomdin singularity
(W, 0) ⊂ (C3

, 0) with respect to ω satisfies the following equality:

µ(W, 0) =

(

d

p
x

− 1

)(

d

p
y

− 1

) (

d

p
z

− 1

)

+ k

∑

P∈Sing(Cω)

µ(Cω

, P ).

6.2 ∗-Polynomials

The theory of (local) SIS or Yomdin singularities has an analogous global
counterpart defined by polynomials of type f = f

d
+ f

d−k
+ . . . and the same

geometric condition. For instance the formula for the global Milnor number
is done by the authors in [10] and for the zeta-function of the monodromy at
infinity by S.M. Gusein-Zade and the last two authors in [29]. A finer study
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has been done in a series of works A. Némethi and R. Garćıa López [22, 23, 24]
for ∗-polynomials f = f

d
+ f

d−1 + . . . . The behaviour of these polynomials at
infinity imitates in some way the local behaviour of SIS singularities. They
computed formulæ for the global Milnor number, monodromy at infinity,
Mixed Hodge structure at infinity...

6.3 Intersection form of a SIS singularity

In the topological study of singularities, we are interested in invariants living
in the complex setting (like the Jordan form of the monodromy) but also in
invariants living in the integers, like monodromy over Z, Seifert form or the
intersection form in a distinguished basis of vanishing cycles.

It is well-known how to compute these invariants for local germs of curves.
In his thesis, M. Escario computes these invariants for polynomials in two
variables which are generic at infinity (in fact, for the more general concept
of tame polynomials), using a generic polar mapping Φ and the braid mon-
odromy of the discriminant of Φ.

Combining these techniques with Gabriélov’s method (see [21]), M. Es-
cario gives a method to compute the intersection form of the Milnor fiber
in a distinguished basis of vanishing cycles for SIS singularities. In fact, this
method works also for Yomdin singularities.

6.4 Durfee’s conjecture for SIS singularities

A. Durfee [18] conjectured that the signature of the Milnor fibre of an hy-
persurface surface singularity is negative. In fact, Durfee’s conjecture is the
stronger inequality

6p
g
≤ µ. (*)

Y. Xu and S.S.T. Yau proved (∗) for weighted homogeneous surface singular-
ties, [90]. A. Neméthi [52] verified the inequality (∗) in the case f(x, y) + z

n

with f(x, y) ∈ C{x, y} irreducible, see also T. Ashikaga [11].

Using SIS singularities, A. Melle Hernández [50] proved (∗) for abso-

lutely isolated surface singularities. A surface hypersurface (V, 0) ⊂ (C3
, 0) is

absolutely isolated if there exists a resolution π : Ṽ → V such that π is a
composition of blowing-ups at points.
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[35] Lê, D.T.: Ensembles analytiques complexes avec lieu singulier de dimen-

sion un (d’apres Iomdine). In: Seminaire sur les Singularités, Publica-
tions Matematiqués de l’Université Paŕıs VII, pp. 87–95 (1980).
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J. Math. 110, 1–21 (1988).

[41] Loeser, F.: Fonctions d’Igusa p-adiques, polynômes de Bernstein, et
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Linear Free Divisors and Quiver

Representations

Ragnar-Olaf Buchweitz David Mond

To Gert-Martin Greuel

Abstract

Linear free divisors are free divisors, in the sense of K. Saito, with
linear presentation matrix. Using techniques of deformation theory on
representations of quivers, we exhibit families of such linear free divi-
sors as discriminants in representation varieties for real Schur roots of
a finite quiver. Along the way we review some basic results on represen-
tation varieties of quivers, their associated fundamental exact sequence
and semi-invariants; explain in detail how to verify the occurring dis-
criminant as a free divisor and how to determine its components and
their equations. As an illustration, the linear free divisors that arise as
the discriminant from the highest root of a Dynkin quiver are treated
explicitly.

1 Introduction

Let X be a non-singular n-dimensional complex manifold (or algebraic variety
over an algebraically closed field k of characteristic zero), and let D ⊂ X be a
hypersurface with reduced defining ideal I

X
. We denote by Der(− logD) the

sheaf of vector fields χ ∈ Der
X

such that χ · I
X
⊂ I

X
, or, equivalently, such

that χ is tangent to D at its regular points. It is clearly an O
X

-module.

Definition 1.1. The hypersurface D ⊆ X is a free divisor if Der(− logD) is
a locally free O

X
-module.
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Free divisors were introduced by K. Saito in [28]. The simplest example is the
normal crossing divisor, but the main source of examples, motivating Saito’s
definition, has been the deformation theory of singularities, where discrimi-
nants and bifurcation sets are frequently free divisors. If D is the discriminant
hypersurface in the base S of a versal deformation of an isolated hypersur-
face singularity, the module Der(− logD) is the kernel of the Kodaira-Spencer
map from Der

S
onto the relative T 1 of the deformation, and from this freeness

follows by an easy homological argument, due initially to Teissier. Variants
on this argument show the freeness of the discriminant in the base of a versal
deformation in a number of cases: isolated complete interesection singular-
ities ([20]), space-curve singularities ([32]), functions on space curves ([14],
[22]), Gorenstein surface singularities in 5-space ([5]), Hilbert schemes of a
smooth surface ([4]). Damon, in his paper “The legacy of free divisors” ([7]),
has shown, by an essentially similar argument, how the bifurcation set in
the base space of a versal deformation of a non-linear section of a free di-
visor is once again a free divisor, provided a natural condition, namely, the
existence of “Morse-type singularities”, is met. Another significant source of
examples is the theory of hyperplane arrangements, where many examples
of free arrangements have been constructed by combinatorial means (see e.g.
[25] Chapter 4).

Saito’s original paper [28] contained the following criterion, now known
by his name, for a divisor D to be free:

Proposition 1.2 (Saito’s Criterion). The hypersurface D ⊂ X is a free

divisor in the neighbourhood of a point x if and only if there are germs of vec-

tor fields χ1, . . ., χn ∈ Der(− logD)
x
, such that the determinant of the matrix

of coefficients [χ1, . . ., χn], with respect to some, or any, O
X,x

-basis of Der
X,x

,

is a reduced equation for D at x. In this case, χ1, . . ., χn form a basis for

Der(− logD)
x
. 2

Note that it is clear that the determinant of the matrix of coefficients of
any n-tuple of vector fields in Der(− logD) must vanish identically on D,
since at any regular point x ∈ D all n vectors lie in the n − 1-dimensional
vector space T

x
D. Moreover, since Der(− logD) coincides with Der

X
outside

D, the determinant of the matrix of coefficients of any set of generators of
Der(− logD) must vanish only on D.

In practice, one uses often the following concrete algebraic version of this
criterion that does not refer to vector fields directly, rather characterizes the
Taylor series of the function f defining a free divisor at some point x ∈ X:

Proposition 1.3. A formal power series f ∈ P = k[[z1, ..., zn]] defines a (for-

mal) free divisor, if it is reduced, that is, squarefree, and there is an (n×n)–
matrix A with entries from P such that

detA = f and (∇f)A ≡ (0, ..., 0) mod f ,
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where ∇f =
(

∂f

∂z1
, . . . ,

∂f

∂zn

)

is the gradient of f , and the last condition just

expresses that each entry of the (row) vector (∇f)A is divisible by f in P . The

columns of A can then be viewed as the coefficients of a basis, with respect to

the partial derivatives ∂/∂z
i
, of the logarithmic vectorfields along the divisor

f = 0. 2

The normal crossing divisor D = {x1· · ·xn = 0} provides a simple exam-
ple: Saito’s criterion shows that the vector fields x1∂/∂x1, . . . , xn∂/∂xn form
a basis for Der(− logD). This free divisor has the striking property that
Der(− logD) has a basis consisting of vector fields that are homogeneous
of weight zero with respect to the natural grading. Among free hyperplane
arrangements it is the only one with this property ([25, Chapter 4]). Until
recently, the only other free divisor with this property known to either of
the authors of this paper was the “bracelet”, the discriminant in the space of
binary cubics (see [13], and [23], where it is described in some detail, though
not under this name).

Definition 1.4. The free divisor D is linear if Der(− logD) has a basis
consisting of vector fields of weight zero — that is, all of whose coefficients
are linear functions of the variables.

Here we show that far from being uncommon, linear free divisor are abundant.
We show that the set of degenerate, or non-generic, orbits in the represen-
tation space Rep(Q,d) of a quiver with dimension vector d, is a linear free
divisor whenever d is a real Schur root (definition in Section 3) of Q, and
provided that a natural condition on the existence of “codimension 1” degen-
eracies holds — a condition which is closely related to Damon’s condition on
the existence of “Morse-type singularities” mentioned above.

Since we hope that our paper will be read by singularity theorists, we
include some background on quiver representations.

2 Linear Free Divisors

Suppose that D is a linear free divisor, and let χ1, . . ., χn be a basis consisting
of weight-zero vector fields. Since the weight of the Lie bracket of any two
homogeneous vector fields is the sum of their weights, χ1, . . ., χn form the
basis of an n-dimensional Lie algebra L

D
over k, as well as a basis of the free

O-module Der(− logD). Consider the standard action of Gl
n
(k) on k

n. The
vector field x

i
∂/∂x

j
is the infinitesimal generator of this action corresponding

to the elementary matrix E
ij

(1 in the i-th row and j-th column, zeroes
elsewhere). It follows that L

D
is the image, under the infinitesimal action,

of an n-dimensional Lie subalgebra of gl
n
(k), which we denote g

D
. In the
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complex case, if the exponential of g
D

is a closed subgroup G
D

of Gl
n
(C),

then G
D

has an open orbit in Cn and D is its complement. This follows easily
from Mather’s lemma on Lie group actions ([21] Lemma 3.1), which gives
sufficient conditions for a connected submanifold of a manifold to lie in a
single orbit of the action of a Lie group G: that

(i) at each point of X, T
x
X should be contained in the tangent space to

the G orbit of x, and

(ii) the dimension of this orbit should be constant for x ∈ X.

Taking X = C
n
\D, both conditions evidently hold here.

In all examples known, this indeed applies. To find linear free divisors one may
thus look for n–dimensional Lie groups acting on kn with an open orbit. It is
precisely these that the representation theory of quivers offers in abundance.
Indeed, in that situation, the Lie groups G

D
are reductive. Examples of some

nonreductive groups that also give rise to linear free divisors will be presented
in [15]. Here we mention just one series.

Example 2.1. The group B
n
(k) of upper triangular n× n matrices acts on

the space Sym
n
(k) of symmetric matrices by

B · S = t

B S B.

There is an open orbit; the equation of the complement is the product of n
nested symmetric determinants, beginning with the top left hand entry (1×1
determinant) in the symmetric matrix S and continuing with the determinant
of the top left hand 2 × 2 block, the determinant of the top left hand 3 × 3
block, etc.

3 Representations of Quivers

A quiver is a finite directed graph. That is, it consists of a finite set Q0 of
nodes (or vertices), and a finite set of arrows Q1 equipped with two maps
h, t : Q1 → Q0 that assign to each arrow ϕ ∈ Q1 its head hϕ and tail tϕ in
Q0. A representation V of a quiver Q consists of a choice of vector space V

x

for each node x, and a k-linear map V (ϕ) : V
tϕ
→ V

hϕ
for each arrow ϕ ∈ Q1.

The representation is finite dimensional if each V
x

is a finite dimensional
vector space.

If W is a second such representation, then a morphism of representations

ψ : W → V is a family of k–linear maps ψ
x

: W
x
→ V

x
, x ∈ Q0, such that for
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each ϕ ∈ Q1 the square

W
tϕ

W (ϕ)

ψtϕ

W
hϕ

ψhϕ

V
tϕ

V (ϕ)

V
hϕ

commutes. The k–vector space of all morphisms of representations from W

to V is denoted Hom
Q
(W,V ). The so-defined category of (finite dimensional)

representations of Q is abelian. Moreover, it is hereditary , which means that
the extension groups in this abelian category — denoted Exti

Q
(W,V ), or

Exti
kQ

(W,V ) if we wish to specify the coefficients — vanish whenever i ≥ 2.
Once we fix the dimensions of the spaces at each node, by assigning

to Q a dimension vector d ∈ NQ0 , we can consider the k-vector space of
representations

Rep(Q,d) =
∏

ϕ∈Q1

Hom
k
(V

tϕ
, V

hϕ
) '

∏

ϕ∈Q1

Hom
k

(

k
d(tϕ)

, k
d(hϕ)

)

.

The group Gl(Q,d) =
∏

x∈Q0
Gl

d(x)(k) acts on Rep(Q,d) by

(g
x
)
x∈Q0

· (V (ϕ))
ϕ∈Q1

=
(

g
hϕ
◦ V (ϕ) ◦ g−1

tϕ

)

ϕ∈Q1

.

The orbits of this group action are the isomorphism classes of Q–representa-
tions with the prescribed dimension vector. It will be from this action that we
obtain the generators of Der(− logD) for the linear free divisors we construct.

Given V ′
∈ Rep(Q,d′) and V

′′
∈ Rep(Q,d′′), the direct sum V

′
⊕ V

′′
∈

Rep(Q,d′ + d′′) is the representation with (V ′
⊕ V

′′)
x

= V
′
x
⊕ V

′′
x

for x ∈ Q0

and

(V ′
⊕ V

′′)(ϕ) =

(

V
′(ϕ) 0
0 V ′′(ϕ)

)

.

A given representation V ∈ Rep(Q,d) is decomposable if it is the direct sum of
subrepresentations — that is, if there are representations V ′

∈ Rep(Q,d′) and
V ′′
∈ Rep(Q,d′′) such that V = V

′
⊕V

′′. In this case, of course, d = d′ +d′′.
A quiver Q is a Dynkin quiver if the underlying undirected graph Q is

a disjoint union of Dynkin diagrams of type A
n
, D

n
, E6, E7 or E8. Dynkin

quivers are ubiquitous in the theory of representations of quivers, and central
in this paper.

Example 3.1. Let Q be the following Dynkin quiver of type A3

•
A
•

B
•
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(i) With dimension vector (1, 1, 1) any representation in which each of the
morphisms is non-zero is indecomposable.
(ii) Indeed, these are the only indecomposable representations whose dimen-
sion vector is sincere, meaning that it is nonzero at each node. For example,
if d = (1, 2, 1) there is no indecomposable representation. Representations in
which BA 6= 0 decompose as the direct sum

k
A

−→ im A ∼= k
B|im A
−−−→ k ⊕ 0 −→ ker B ∼= k −→ 0

Representations in which BA = 0 and A 6= 0 decompose as

k
A

−→ im A ∼= k −→ 0 ⊕ 0 −→ k
2
/ im A ∼= k

B

−→ k

where the middle term in the second summand can be viewed as a complement
to im A. Representations in which A = 0 decompose as

k −→ 0 −→ 0 ⊕ 0 −→ k
2 B

−→ k.

Similarly, any representation with d = (l, m, n) for l, m, n ≥ 0 decomposes
as:

(k −→ 0 −→ 0)⊕a ⊕ (0 −→ k −→ 0)⊕b ⊕ (0 −→ 0 −→ k)⊕c

⊕ (k
1
−→ k −→ 0)⊕d ⊕ (0 −→ k

1
−→ k)⊕e ⊕ (k

1
−→ k

1
−→ k)⊕f ,

where

a = dim kerA , b = dim kerB/(im A ∩ ker B) , c = dim cok B ,

d = dim kerBA/ kerA , e = dim im B/ im BA ,

f = dim im BA = l − a− d = m− b− d− e = n− c− e .

Definition 3.2. The dimension vector d is a root of Q if Rep(Q,d) contains
an indecomposable representation. The root is real if Rep(Q,d) contains ex-
actly one orbit of, necessarily isomorphic, indecomposable representations. It
is imaginary if there is a family of non-isomorphic indecomposable represen-
tations. If a general representation in Rep(Q,d) is indecomposable, then d is
a Schur root. 1

The frequent use of the term “root” in these definitions is no coincidence,

as we will see below.

1Some authors define a Schur root as a root d for which Rep(Q,d) contains a ‘brick’ —
a representation V for which EndQ(V ) = k. If d is a Schur root in this sense, then by the
upper semicontinuity of dim EndQ(V ) with respect to V , the general representation also
has endomorphism ring k, and so is indecomposable. Conversely, 2.7 of [19] shows that if
the general representation is indecomposable then it is a brick. So the two versions of the
definition are equivalent.
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A crucial role in the representation theory of quivers is played by the Euler

form, a bilinear form on the space NQ0 of dimension vectors. It is defined by

〈e,d〉 =
∑

x∈Q0

e
x
d
x
−

∑

ϕ∈Q1

e
tϕ
d
hϕ

= dim
∏

x∈Q0

Hom(W
x
, V

x
)− dim

∏

ϕ∈Q1

Hom
k

(

W (t(ϕ)), V (h(ϕ))
)

for any W ∈ R(Q, e) and V ∈ R(Q,d), and accordingly we sometimes denote
〈e,d〉 by 〈W,V 〉.

The Tits form on the space of dimension vectors is the associated
quadratic form, q(d) = 〈d,d〉. Observe that the Tits form does not depend
on the orientation of the arrows. Indeed, it is used to calculate the members
of the root system of the Kac–Moody Lie algebra attached to the underlying
graph Q, and those roots with nonnegative components are precisely the roots
for Q, regardless of the orientation of the arrows, see [17]. For example, if Q
is a Dynkin diagram then d ∈ Q|Q0| is a root of the corresponding semi-simple
Lie algebra, in the classical sense, if and only if q(d) = 1. In particular, all
roots are real in this case.

Choosing an ordering of the nodes in Q0, we may write 〈e,d〉 = eEdT ,
where e,d are thought of as row vectors, and E is the corresponding Euler

matrix . Its entries are E
x,y

= δ
y

x
− #{ϕ ∈ Q1 | tϕ = x, hϕ = y}, with δ

y

x

denoting the Kronecker delta. Put differently, E = I|Q0| − A, where I|Q0| is
the identity matrix of the indicated size and the matrix entry A

x,y
records the

number of arrows from x to y in Q1. The matrix associated to the Tits form
is then C = E +ET , the Cartan matrix of Q, which coincides with the usual
Cartan matrix of the associated Dynkin diagram Q, in case Q is a Dynkin
quiver2.

The following simple result is useful for the actual calculation of the
linear free divisors below.

Lemma 3.3. If Q is a finite quiver without oriented cycles, then its Euler

matrix is invertible. The inverse is given by E−1 = I|Q0| + A
′, where A

′
x,y

equals the number of directed paths from x to y. 2

Now we recall the trichotomy of the representation theory of quivers:

Definition 3.4. A quiver Q is of finite representation type if Q has only
finitely many indecomposable representations, up to isomorphism. The quiver
is wild if its representation theory is at least as complicated as that of the
quiver

•

2More generally, C is the Cartan matrix of the Kac–Moody Lie algebra associated to
Q, for an arbitrary finite quiver Q without oriented cycles, see [17] again.
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The quiver is tame if it is neither of finite representation type, nor wild 3.

Gabriel ([11],[12]) showed

Theorem 3.5. A connected quiver Q is of finite representation type if and

only if it is a Dynkin quiver. Assigning to an isomorphism class of inde-

composable representations of Q its dimension vector induces then a bijection

between these classes and the positive roots of the underlying Dynkin diagram.

2

The last part of this result can be restated thus: if d is a positive root of
the underlying Dynkin diagram (as listed, for example, in the appendix to
[3]) then d is also a root of any associated Dynkin quiver Q, in the sense of
Definition 3.2. Moreover, in this case each root is a real Schur root: there is a
(unique) open orbit in Rep(Q,d) whose points correspond to indecomposable
representations. A good account of all this can be found in [2].

The class of tame quivers has a similar characterisation:

Theorem 3.6 ([9],[24]). A connected quiver is tame if and only if the un-

derlying undirected graph is an extended Dynkin diagram. 2

Finally, in what follows we will need a result of V.Kac ([17]):

Proposition 3.7. Let Q be a connected quiver whose proper subquivers are

all either of finite or tame type. Then a dimension vector d is a real root if

and only if q(d) = 1, and it is an imaginary root if and only if q(d) ≤ 0. 2

4 The Fundamental Exact Sequence

Let V and W be representations of the quiver Q. In [26], Ringel introduced
the following exact sequence EW

V
of vector spaces:

0 −→ Hom
Q
(W,V ) −→

∏

x∈Q0

Hom
k
(W

x
, V

x
) (1)

d
W
V
−→

∏

ϕ∈Q1

Hom
k

(

W (t(ϕ)), V (h(ϕ))
) e

W
V
−→ Ext1

Q
(W,V ) −→ 0 .

The morphism dW
V

is defined by

d
W

V

(

(ψ(x))
x∈Q0

)

=
(

ψ
h(ϕ) ◦W (ϕ)− V (ϕ) ◦ ψ

t(ϕ)

)

ϕ∈Q1

;

3The reader should be aware that the definition often is “tame”=“not wild”, thus,
different from our usage here.
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the component of dW
V

((ψ)) corresponding to ϕ ∈ Q1 measures non-commuta-
tivity of the diagram

W
tϕ

W (ϕ)

ψtϕ

W
hϕ

ψhϕ

V
tϕ

V (ϕ)

V
hϕ

whence it is clear that ker dW
V

is indeed equal to Hom
Q
(W,V ).

To define eW
V

, from θ = (θ
ϕ
)
ϕ∈Q1

we construct a new representation Z of Q
and an exact sequence,

e
W

V
(θ) ≡ 0 → V

i

−→ Z
j

−→ W → 0 ,

by the following recipe: Z
x

= V
x
⊕W

x
for each x ∈ Q0, ix : V

x
→ V

x
⊕W

x

and j
x

: V
x
⊕W

x
→ W

x
are the standard inclusion and projection, and for

each ϕ ∈ Q1, Z(ϕ) : V
tϕ
⊕W

tϕ
→ V

hϕ
⊕W

hϕ
has matrix

(

W (ϕ) θ
ϕ

0 V (ϕ)

)

.

It is straightforward to check that the short exact sequence eW
V

(θ) of repre-
sentations of Q is split iff θ = dW

V
(ψ) for some ψ ∈

∏

x∈Q0
Hom(W

x
, V

x
), and

that eW
V

is onto.
Exactness of the sequence E W

V
implies that

〈e,d〉 = dim
k
Hom

Q
(W,V )− dim

k
Ext1

Q
(W,V )

for any W ∈ R(Q, e) and V ∈ R(Q,d), so that the expression on the right
hand side depends only on the dimension vectors and not on the choice
of representations, although evidently the dimensions of Ext1

Q
(W,V ) and

Hom
Q
(W,V ) do depend on the choice of V ∈ R(Q,d) and W ∈ R(Q, e).

The fundamental sequence EW

V
plays two roles in what follows. In the next

section we show how to reinterpret it in terms of the deformation theory of
representations, where it may become more familiar to singularity-theorists.
From this we will see how free divisors appear naturally in this context.

Second, following Schofield [30], we use it to generate semi-invariants of
the representation space R(Q,d) =

∏

ϕ∈Q1
Hom

k
(kd(tϕ)

, k
d(hϕ)), and thereby

find explicit equations for the free divisors, in Sections 8 and 10.

5 Deformations of Representations

Recall that the group Gl(Q,d) acts on Rep(Q,d) by

(g
x
)
x∈Q0

· (V (ϕ))
ϕ∈Q1

=
(

g
hϕ
◦ V (ϕ) ◦ g−1

tϕ

)

ϕ∈Q1

.
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The orbit of V in Rep(Q,d) is open if and only if the associated map

αV : Gl(Q,d) → Rep(Q,d)

sending g to g · V is a submersion, and for this it is enough that it be a
submersion at the identity. The Lie algebra gl(Q,d) of Gl(Q,d) is

∏

x∈Q0

End(kdx) =
∏

x∈Q0

Hom(kdx , k
dx),

and the tangent space to Rep(Q,d) at V is Rep(Q,d) itself, that is,
∏

x∈Q0
Hom

k
(kdtϕ, k

dhϕ). The derivative of α
V

at the identity in Gl(Q,d) is

precisely the map d
V

V
of the exact sequence E V

V
. In fact we may canonically

identify Ext1

Q
(V, V ) with T 1(V ) for the associated deformation theory, though

we will not make any formal use of this identification.
A deformation, in the analytic category, of a representation V is, by

definition, the germ of an analytic map (B, 0) → (Rep(Q,d), V ). If (B, 0) is
smooth, a deformation V : (B, 0) → (Rep(Q,d), V ) is versal if and only if it
is complete, that is, if every other deformation V ′ : (B′

, 0) → (Rep(Q,d), V )
is equivalent to one induced from it by base-change η : (B ′

, 0) → (B, 0). The
equivalence here is the existence of a map-germ g : (B, 0) → (Gl(Q,d), 1)
such that

V
′(b′) = g(b′) · V (η(b′)).

Thus it is evident that Rep(Q,d) itself, or more precisely the identity map
(Rep(Q,d), V ) → (Rep(Q,d), V ), is a versal deformation; for any other de-
formation V ′, the base change map η is simply V ′ itself, and g is the con-
stant map taking the value 1. The slice theorem from the theory of smooth
group actions is now enough to establish the versality of any deformation
obtained from this one by restricting its domain to any smooth space-germ
transverse to the orbit of V , or indeed by pulling it back by any map-germ
(B, 0) → (Rep(Q,d), V ) transverse to the orbit of V . These considerations
imply the Artin–Voigts Lemma: that the dimension of Ext1

Q
(V, V ) ∼= T

1(V )
equals the codimension of the orbit of V in Rep(Q,d). In particular, if there is
an open orbit, then the representations therein have no self-extensions: they
are rigid as representations.

Now we consider the relative T 1, obtained by regarding the coeffi-
cients of the morphisms V (ϕ) as variables. This can be done in the ana-
lytic, formal or algebraic category, and amounts to no more than tensor-
ing the exact sequence E V

V
with the appropriate ring, or sheaf, of func-

tions — ORep(Q,d), k[Rep(Q,d)∗] or k[[Rep(Q,d)∗]]. We refer to these in-
distinctly as R. The module (sheaf) of vector fields on Rep(Q,d) is θ

R
=

Der
k
(R) ∼= Rep(Q,d)⊗

k
R, and the k-linear map gl(Q,d)) → Rep(Q,d) ex-

tends to a morphism of R-modules gl(Q,d) ⊗
k
R → θ

R
whose cokernel can



Linear Free Divisors and Quiver Representations 51.

be viewed both as Ext1

RQ
(M,M) for the universal representation M of the

quiver Q with coefficients in R, and as the relative T 1 of the versal deforma-
tion i : Rep(Q,d) → Rep(Q,d), denoted T 1(i/Rep(Q,d)). The surjection
θ
R
→ T

1(i/Rep(Q,d)) is the Kodaira-Spencer map of the versal deformation
i.

The kernel of this projection is the space of simultaneous endomorphisms
of the representations V ∈ Rep(Q,d), or, in other words, the endomorphism
ring of the universal representation M . Provided the general representation
in Rep(Q,d) is indecomposable, this ring is isomorphic to R. Let us un-
derstand why this is so. It is clear that if V ∈ Rep(Q,d) is any represen-
tation then for each λ ∈ k∗ we have (λI

dx
)
x∈Q0

∈ Aut
k
(V ), and similarly

(λI
dx

)
x∈Q0

∈ End
Q
(V ) for λ ∈ k. If V is stably indecomposable (that is,

if there is a neighbourhood of V in Rep(Q,d) consisting of indecomposable
representations) then this copy of k accounts for all of End

Q
(V ) (see e.g. [19],

2.7 ). Now if the general representation in Rep(Q,d) is indecomposable —
which means that d is a Schur root — then at each of these representations,
any endomorphism of the universal representation M must be a scalar. By
density, the same must be true everywhere, and so End

R
(M) can be identified

with R.
The cokernel of the inclusion of Lie algebras 0 → k → gl(Q,d) is, by

definition, pgl(Q,d), and we can identify the cokernel of the inclusion of free
R-modules 0 → R → gl(Q,d)) ⊗ R with pgl(Q,d) ⊗ R. Thus, provided the
generic representation in Rep(Q,d) is indecomposable, we have a short exact
sequence

0 → pgl(Q,d)⊗
k
R

d̃
M
M
−→ θ

R
→ Ext1

RQ
(M,M) → 0. (2)

Even without generic indecomposability, we still have an exact sequence

pgl(Q,d)⊗
k
R

d̃
M
M
−→ θ

R
→ Ext1

RQ
(M,M) → 0. (3)

Let D be the support of Ext1

RQ
(M,M) = T

1(i/Rep(Q,d)), with (possibly

non-reduced) coordinate ring R[D] = R/F0

(

Ext1

RQ
(M,M)

)

, where F0 means
zero’th Fitting ideal.

Proposition 5.1. (i) D is the set of non-rigid representations. Its open

complement is the set of rigid representations4.

If q(d) = 1 and the general representation in Rep(Q,d) is indecomposable,

thus, d is a Schur root, then

4Singularity theorists might prefer ‘stable’ to ‘rigid’; however in representation theory
the term ‘stable’ often refers to its meaning in geometric invariant theory, so here we use
‘rigid’.
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(ii) D is a divisor in Rep(Q,d).

(iii) Ext1

RQ
(M,M) is a maximal Cohen-Macaulay R[D]-module.

(iv) The image of d̃M
M

: pgl(Q,d)⊗
k
R → θ

R
is contained in Der(− logD).

Proof. (i) Let mV
be the maximal ideal of R corresponding to V ∈ Rep(Q,d).

By right-exactness of tensor product, tensoring the sequence (3) with R/m
V

gives the exact sequence

pgl(Q,d)
d

V
V
−→ Rep(Q,d) → Ext1

Q
(V, V ) = T

1(V ) → 0.

This establishes (i).

(ii) Since now pgl(Q,d) ⊗k R and θ
R

are free R-modules of the same rank,
F0(Ext1

RQ
(M,M)) is generated by det(d̃M

M
), and so

D = supp(Ext1

RQ
(M,M)) = V

(

F0(Ext1

RQ
(M,M))

)

= V (det(d̃M
M

)) .

(iii) Exactness of the sequence (2) implies, by the Auslander-Buchsbaum for-
mula, that

depth
R
(Ext1

RQ
(M,M)) = dim R− 1 = dim Ext1

RQ
(M,M) ,

where “dim” here refers to Krull dimension.

Hence Ext1

RQ
(M,M) is a Cohen-Macaulay R-module. It is annihilated

by F0

(

Ext1

RQ
(M,M)

)

, so is an R[D]-module, and as such, a maximal Cohen-
Macaulay module.

(iv) The vector fields in d̃M
M

(

pgl(Q,d) ⊗
k
R
)

are infinitesimal generators of
the action of Gl(Q,d) on Rep(Q,d), and are thus tangent to all its orbits. So
they are tangent to D, which is a union of orbits.

Note that by 3.5, if Q is a Dynkin quiver then in order for (ii)-(iv) to hold
we need only require that q(d) = 1.

If the conditions of 5.1(ii)-(iv) hold, and moreover the vector fields in
d̃M
M

(

pgl(Q,d) ⊗
k
R
)

generate Der(− logD) then D is a linear free divisor,
since by exactness of (2), Der(− logD) is free over R. Saito’s criterion (1.2
above) shows that in order that they do generate, it is enough that det

(

d̃M
M

)

be reduced.

Thus, we obtain the following result:

Corollary 5.2. With the conditions of 5.1(ii)-(iv), suppose in addition that

D is reduced. Then it is a linear free divisor. 2
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From now on we will refer to the divisor D of non-rigid representations in
Rep(Q,d) as the discriminant and call ∆ = det

(

d̃M
M

)

its canonical equation.
Suppose that D is reduced at V . Then by Saito’s criterion, the vector

fields in d̃M
M

(

pgl(Q,d)⊗
k
R
)

generate the stalk at V of the sheaf Der(− logD).
If V is a regular point of D, then the tangent space T

V
D is equal to

dV
V

(

pgl(Q,d)
)

⊆ Rep(Q,d). It follows that the deformation of V obtained
by following any smooth curve transverse to D is versal. For the same rea-
son, any deformation in a direction tangent to D is infinitesimally trivial at
V . Since the same holds at any nearby point, any deformation of V in the
smooth part of D is globally trivial. In terms of the group action, this means
that then each irreducible component of D contains a dense open orbit, and
for each representation V in such an orbit, T 1(V ) will be one-dimensional.
We now investigate further the relation between the dimension of T 1(V ) for a
generic representation on such a component and the multiplicity with which
that component occurs in the discriminant.

Lemma 5.3. Let D
j

be an irreducible component of D, and h
j

its reduced

equation, m
j
the multiplicity of h

j
in det

(

d̃
M

M

)

, and V
j
a generic representation

on D
j
. One has then m

j
≥ dim

k
T

1(V
j
) and equality holds if and only if h

j

annihilates Ext1

RQ
(M,M). In particular, m

j
= 1 forces dim T

1(V
j
) to be one-

dimensional and the orbit generated by V
j

to be dense in D
j
.

Proof. Let p be the ideal (hj). Then the localisation R
p

is a discrete valuation
ring. We must have

Ext1

RQ
(M,M)⊗

R
R
p
'

`
⊕

1

R
p
/(pR

p
)αt (4)

for some positive integers α
t
; it follows that the matrix d̃M

M
is equivalent, over

R
p
, to a matrix of the form diag(hα1

j
, ..., h

α`

j
) ⊕ I

r−`, a block matrix formed
of the indicated diagonal matrix and the identity matrix I

r−`, where r =

dim
k
pgl(Q,d). Evidently det d̃M

M
= (h

j
)
P`

t=1
αt in R

p
, and so

∑

`

t=1
α
t

= m
j
.

Moreover, by (4),
∑

`

t=1
α
t
is also the rank of Ext1

RQ
(M,M) at a generic point

V
j

of D
j
. Dividing by the maximal ideal m

Vj
, we see that then ` is equal

to dim
k
Ext1

Q
(V

j
, V

j
). Therefore, m

j
=
∑

`

t=1
α
t
≥ ` = dim

k
Ext1

Q
(V

j
, V

j
) =

dimT 1(V
j
). Clearly, m

j
= ` if and only if each α

t
= 1 if and only if h

j

annihilates Ext1

RQ
(M,M).

In the case of Dynkin quivers, it follows that the discriminant is indeed re-
duced, as we show next.

Proposition 5.4. Let d be a real Schur root of a Dynkin quiver Q and assume

that V ∈ Rep(Q,d) satisfies dimT 1(V ) = 1. If D′
⊆ D denotes the irreducible
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component of the discriminant that contains V and h
′ = 0 is its reduced

equation, then h′ divides ∆ = det
(

d̃
M

M

)

with multiplicity one.

Proof. We begin by clarifying in general what it means that D
′ appears

with multiplicity one, if we know already that the generic representation
on it has one-dimensional T 1: As T 1(V ) = Ext1

Q
(V, V ) is one-dimensional,

the semi-universal deformation of V as a representation of Q has a one-
dimensional base. Because V deforms into a rigid representation generi-
cally, its reduced discriminant consists just of the origin. By Openess of
Versality, it suffices to prove that the discriminant in that semi-universal
deformation is indeed reduced. If V is the universal module over k[[t]], the
(formal) base ring of the semi-universal deformation, it suffices to show
that Ext1

k[[t]]Q
(V,V) is a one-dimensional vector space. Now Ext1

k[[t]]Q
(V,V)

is concentrated on the discriminant, thus a finite dimensional vector space.
Moreover, Ext1

k[[t]]Q
(V,V)⊗

k[[t]] k
∼= Ext1

Q
(V, V ) ∼= k, whence as k[[t]]–module

Ext1

k[[t]]Q
(V,V) ∼= k[[t]]/(tm) for some m. We need to show that m = 1, and

this can be achieved by establishing that the following natural projection, in
its various guises:

Ext1

k[[t]]Q
(V,V)⊗

k[[t]]k[[t]]/(t
2)

∼= Ext1

k[[t]]Q
(V,V/(t2)V)

∼=
k[[t]]/(tm, t2)

Ext1

k[[t]]Q
(V,V)⊗

k[[t]]k
∼= Ext1

k[[t]]Q
(V,V/(t)V) ∼= Ext1

kQ
(V, V )

∼=
k

is an isomorphism. To this end, let

0 → V
i

−→W
p

−→ V → 0 (5)

represent a nontrivial element in Ext1

Q
(V, V ). Define an action of t on W

through t(w) = ip(w). Clearly, t2 = ipip = 0 on W , whence the Q–representa-
tion W becomes as well a k[[t]]/(t2)–module. Infinitesimal deformation theory
says that indeed W ∼= V/t2V, and that the extension above can be viewed
as an extension of k[[t]]–modules,

0 → V ∼= V/tV
i
∼=t×−
−−−−→ W ∼= V/t

2
V

p
∼=−⊗k[[t]]k

−−−−−−→ V ∼= V/tV → 0 .

Now apply Hom
k[[t]]Q(V,−) to this exact sequence to obtain the following long

exact sequence of k[[t]]–modules, with δ denoting the connecting homomor-
phism:

0 Hom
k[[t]]Q(V, V ) Hom

k[[t]]Q(V,W ) Hom
k[[t]]Q(V, V ) δ

Ext1

k[[t]]Q
(V, V ) Ext1

k[[t]]Q
(V,W )

Ext
1

k[[t]]Q
(V,p)

Ext1

k[[t]]Q
(V, V ) 0
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The map π = Ext1

k[[t]]Q
(V, p) is the same as the projection alluded to above,

which we wish to show is an isomorphism. Using the various identifications,
we may rewrite this long exact sequence as

0 End
Q
(V ) End(k[[t]]/(t2))Q(W ) End

Q
(V ) δ

Ext1

Q
(V, V ) Ext1

k[[t]]Q
(V,W ) π Ext1

Q
(V, V ) 0

As d is a Schur root, and dimT
1(V ) = dim Ext1

Q
(V, V ) = 1, we see that π is an

isomorphism if and only if δ 6= 0 if and only if there exists a Q–endomorphism
of V that cannot be lifted to a k[[t]]–linear Q–endomorphism of W . While
these considerations apply to any quiver, we now show that δ 6= 0, thereby
establishing that π is indeed an isomorphism, for any Schur root of a Dynkin
quiver.

By assumption, q(V ) = 1 and dim Ext1

Q
(V, V ) = 1, whence V is de-

composable, say, V = V ′
⊕ V

′′ for nonzero Q–representations V
′
, V

′′. It
follows from dim End

Q
(V ) = 2 that End

Q
(V ) ∼= End

Q
(V ′)⊕ End

Q
(V ′′), and

that the endomorphism rings of V ′
, V

′′ are one-dimensional, in particular
these representations are indecomposable. This means that their dimension
vectors are real Schur roots as well, and so the representations are rigid. From
Ext1

Q
(V, V ) ∼= Ext1

Q
(V ′
⊕V

′′
, V

′
⊕V

′′), it then follows that exactly one of the

groups Ext1

Q
(V ′

, V
′′) or Ext1

Q
(V ′′

, V
′) is nonzero — and then one-dimensional.

Assume Ext1

Q
(V ′

, V
′′) 6= 0. The associated nontrivial extension

0 → V
′′ i

−→W
′ p

−→ V
′
→ 0 (6)

gives rise to the following nonzero extension class in Ext1

Q
(V, V ):

V
′ =
−−−−→ V

′

⊕ ⊕

0 → V
′′ i

−−−−→ W
′ p

−−−−→ V
′
→ 0

⊕ ⊕

V
′′ =
−−−−→ V

′′

Note that W ′ has dimension vector d, as that is the sum of the dimension
vectors of V ′′ and V ′, equal to the dimension vector of V . It is now a general
fact that V = V ′

⊕ V
′′ deforms into the middle term W

′, for any extension.
As the sequence does not split, W ′

6∼= V , and, as V has a onedimensional
semi-universal deformation, W ′ must be the indecomposable representation
of dimension vector d. Using the observation following (5), the k[[t]]–module
structure on the middle term W = V

′
⊕W

′
⊕ V

′′ is as follows:

t(V ′) = 0 , t|
W

′ = p , t|
V

′′ = i .
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With W
′ an indecomposable Q–representation and the action of t as de-

scribed, it follows easily that W = V ′′
⊕W

′
⊕ V

′ is indecomposable as a Q–
representation over k[[t]].

Accordingly, its endomorphism ring End(k[[t]]/(t2))Q(W ) contains only the
trivial idempotents, thus none of the idempotents in End

Q
(V ) that corre-

sponds to the projections onto the indecomposable factors of V can be lifted,
and the natural ring homomorphism End(k[[t]]/(t2))Q(W ) → End

Q
(V ) is not

surjective. This yields the claim.

Corollary 5.5. If Q is a Dynkin quiver and d is a real root of Q then the

discriminant in Rep(Q,d) is a linear free divisor.

Proof. By Gabriel’s theorem Q is of finite representation type. Therefore at
a generic point V on each irreducible component of D, any deformation of V
inside D is trivial. Thus T 1(V ) is 1-dimensional.

Everything we have said so far only depends on the support of the dimen-
sion vector d, that is, the full subquiver whose nodes are those x ∈ Q0 with
d(x) 6= 0. A dimension vector is sincere if its support is all of Q0.

6 A Criterion for D to be a Linear Free Di-

visor

The group Gl(Q,d) acts on the ring R of polynomial functions on Rep(Q,d)
by the contragredient action, as described earlier in Section 5. A polynomial
f ∈ R is a semi-invariant of weight χ, where χ is a character of Gl(Q,d), if
for all g ∈ Gl(Q,d) we have g · f = χ(g)f . As the characters of Gl

n
(k) are

just integral powers of det, the characters of Gl(Q,d) are in bijection with
elements of ZQ0. The weight w(f) of a semi-invariant f is usually identified
with the image in Z

Q0 of its associated character.

Theorem 6.1. (Sato-Kimura [29]) Let the connected algebraic group G act

on the vector space V . If there is an open orbit then the ring SI(G, V ) spanned

by the semi-invariants is a polynomial ring:

SI(G, V ) = k[f1, . . ., fs]

for some collection of algebraically independent and irreducible semi-invari-

ants f1, . . ., fs. Moreover if f
i
∈ SI(G, V )

χi
then the χ

i
are linearly indepen-

dent in the space of characters of G. 2

Corollary 6.2. Under the assumptions of the theorem, the set of characters

χ such that SI(G, V )
χ
6= 0 forms a free abelian semigroup, isomorphic to Ns.
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In particular, if f is any semi-invariant, of weight χ, then f = uf
a1

1
· · · f

as
s

,

where u is a unit in k and the a
i
≥ 0 are the unique integers such that

χ =
∑

s

i=1
a
i
χ
i
in the space of characters of G. 2

Suppose that d is a real Schur root of Q, and let D be the discriminant
in Rep(Q,d). As D is preserved under the action of Gl(Q,d), its canonical
equation ∆ is a semi-invariant. If V /∈ D, and f is a non-zero semi-invariant,
then f(V ) cannot vanish; if it did, then it would vanish everywhere on the
orbit of V , which is dense. In other words, the zero locus of any semi-invariant
must be contained in the discriminant. In particular, with the f

i
as in 6.1,

f1 · · · fs is necessarily a reduced equation for D, and so ∆ = uf
a1

1
· · · f

as
s

, with
u a unit in k, and uniquely determined integers a

i
> 0.

Moreover, Kac has shown in [18, p.153] that the discriminant for a real Schur
root d contains precisely n−1 irreducible components, where n is the number
of nodes in the support of d, thus, there are s = n − 1 fundamental semi-
invariants f

i
in SI(Gl(Q,d),Rep(Q,d)). This gives us a first combinatorial

criterion for D to be a linear free divisor.

Proposition 6.3. Suppose that d is a real Schur root of Q, supported on n

nodes. Assume further that g1, ..., gn−1 are semi-invariants on Rep(Q,d) with

linearly independent weights w
i

= w(g
i
). If the weight of the discriminant

D satisfies w(D) =
∑

n−1

i=1
a
i
w
i
, for integers a

i
≥ 1, then ∆ = ug

a1

1
· · · g

an−1

n−1

for some unit u ∈ k. If we know further that the weights w
i

generate the

semigroup of all weights occurring in SI(Gl(Q,d),Rep(Q,d)), then the g
i

constitute the reduced equations of the components of D, and D is a linear

free divisor if and only if each a
i
= 1. 2

Derksen and Weyman in [8] describe in general the semigroup of weights oc-
curring in SI(Gl(Q,d),Rep(Q,d)) through a single equation5 and integral
inequalities that depend upon the dimension vectors of generic subrepresen-
tations, whence the criterion can be applied, at least in principle. We may as
well turn the criterion around to determine all semi-invarants if we already
know that D is a linear free divisor, such as for real roots whose support is a
Dynkin quiver:

Corollary 6.4. Assume the discriminant D in Rep(Q,d), for d a real Schur

root, is a free divisor and its canonical equation factors as ∆ = g1 · · · gn−1 for

semi-invariant polynomials g
i

with linearly independent weights. If n is the

number of nodes in the support of d, then the factors g
i
are algebraically inde-

pendent and irreducible polynomials that generate the ring of semi-invariants

SI(Gl(Q,d),Rep(Q,d)). 2

5Namely that the ordinary scalar product of the weight of a semi-invariant with the
dimension vector d has to vanish, that is, w · d = 0.
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Using yet another result of Schofield [30], one may find the weights of all semi-
invariants — indeed the semi-invariants themselves, as we will discuss in more
detail later, see Section 8. Suppose that e is a dimension vector such that
〈e,d〉 = 0. In the exact sequence (1), the matrix dW

V
is now square. We define

a polynomial function c : Rep(Q, e)× Rep(Q,d) → k by c(W,V ) = det dW
V

.
The map

Rep(Q, e)× Rep(Q,d)

→ Hom
k

(

∏

x∈Q0

Hom
(

k
e(x)

, k
d(x)
)

,

∏

ϕ∈Q1

Hom
k

(

k
e(t(ϕ))

, k
d(h(ϕ))

)

)

sending (W,V ) to d
W

V
is Gl(e) × Gl(d)-equivariant, and it follows that for

fixed W , the map cW := c(W, ) represents a semi-invariant polynomial on
Rep(Q,d).

Theorem 6.5. ([30] 4.3) Let Q be a quiver without oriented cycles, and let d
be a sincere real Schur root for Q. The polynomials cW with 〈W,V 〉 = 0 span

the ring of semi-invariants SI(Gl(d),Rep(Q,d)). 2

The weights of these semi-invariants, as well as that of the discriminant, are
then easily established, using essentially the same argument as in [30, 1.4].
To formulate it succinctly, we introduce the in–degree ind and the out–degree

outd of d as the dimension vectors

ind(x) =
∑

ϕ∈Q1:hϕ=x

d(tϕ) , outd(x) =
∑

ϕ∈Q1:tϕ=x

d(hϕ) , for x ∈ Q0. (7)

In terms of the Euler matrix E of Q (see Section 3) one has

ind = d− dE , outd = d− dET

.

Lemma 6.6. Let d, e be dimension vectors for the quiver Q with 〈e,d〉 = 0.
The weight of the Gl(e) × Gl(d) semi-invariant polynomial c(W,V ) in the

character group ZQ0 × ZQ0 is

w(c(W,V )) = (d− outd,−e + ine) = (dET

,−eE) ,

while that of the Gl(d) semi-invariant cW in ZQ0 is

w(cW ) = −e + ine = −eE

and the weight of the discriminant in Rep(Q,d) equals

w(∆) = ind− outd = d(ET

− E) .
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Proof. Let V,W be two representations with dimension vectors d, e such that
〈e,d〉 = 0. The map dW

V
can be viewed as a linear map

d
W

V
:
⊕

x∈Q0

V
x
⊗W

∗
x
−→

⊕

ϕ∈Q1

V (hϕ)⊗W (tϕ)∗ ,

where (−)∗ denotes the k–dual. Denoting by Λ(−) the highest exterior power
of a vector space, and observing that

Λ(U∗) ∼= Λ(U)∗ , Λ(U ⊕ U ′) ∼= Λ(U)⊗ Λ(U ′) ,

Λ(U ⊗ U ′) ∼= Λ(U)dimU
′

⊗ Λ(U ′)dimU

,

for vector spaces U, U ′, the determinant det dW
V

of dW
V

can be represented as

Λ(dW
V

) :
⊗

x∈Q0

Λ(V
x
)e(x)
⊗ Λ(W ∗

x
)d(x)

→

⊗

ϕ∈Q1

Λ(V
hϕ

)e(tϕ)
⊗ Λ(W ∗

tϕ
)d(hϕ)

.

One reads off that as a semi-invariant for Gl(e) × Gl(d) the determinant of
d
W

V
transforms according to

(

∏

ϕ∈Q1

det
(

Gl(d(hϕ))
)e(tϕ)

det
(

Gl(e(tϕ))
)−d(hϕ)

)

·

(

∏

x∈Q0

det
(

Gl(d(x))
)−e(x)

det
(

Gl(e(x))
)d(x)

)

.

Thus, its weight, in the character group ZQ0 ×ZQ0 of Gl(e)×Gl(d), is given
on a pair of nodes (y, x) by

w(det dW
V

)(y, x) = d(y)−
∑

tϕ=y

d(hϕ)− e(x) +
∑

hϕ=x

e(tϕ)

thus,

w(det dW
V

) = (d− outd,−e + ine) = (dET

,−eE) ∈ ZQ0×Q0.

For V = W , the diagonal summand k ⊆ ⊕
x∈Q0

Hom(V
x
, V

x
) does not con-

tribute to the weight of the determinant, and restricting w(det dV
V
) to the

diagonal y = x yields the claimed formula for the discriminant.

Now we are ready to study some examples.
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7 Examples

To illustrate the results and to exhibit explicit linear free divisors arising
from Dynkin quivers, we concentrate mainly on the most complicated ones,
those corresponding to the highest root of a Dynkin diagram viewed as the
dimension vector of some Dynkin quiver. Recall that the connected Dynkin
diagrams are in natural bijection with the binary polyhedral groups, the con-
gruence classes of finite subgroups of Sl(2,C). One has the following simple
relation between the dimension of the representation variety associated to the
highest root and the order of the corresponding finite group.

Lemma 7.1. Let Q be a connected Dynkin quiver, d the highest root of the

underlying Dynkin diagram, and Γ the associated binary polyhedral group. The

dimension of Rep(Q,d), equal to the degree of the discriminant D, is then

dim Rep(Q,d) = |Γ| − 2 .

Proof. By the McKay correspondence, the components d(x) of the highest
root are in bijection with the dimensions of the isomorphism classes of irre-
ducible and nontrivial representations of Γ. Accordingly,

|Γ| = 1 +
∑

x∈Q0

d(x)2 = 2 + dim pgl(d) = 2 + dim Rep(Q,d) .

Example 7.2. Let Q be a Dynkin quiver of type A
n

with any orientation,
and let d be its highest root, the dimension vector assigning 1 at each vertex.
Then Rep(Q,d) can be identified with k|Q1| = k

n−1 by associating to each
morphism its 1×1 matrix. Each of the coordinates is a semi-invariant, and D
is the normal crossing divisor in n−1 variables. Notice that D is independent
of the orientation of the arrows.

Example 7.3. Consider the two Dynkin quivers Q(1) and Q
(2) of type E6

with the highest root as dimension vector as shown. Each space Rep(Q(i)
,d)

has dimension 22 = 24 − 2, as the corresponding binary tetrahedral group
has order 24.

•
2

•
1

A
•
2

B
•
3

E

•
2

C
•
1

D

•
2

•
1

A
•
2

B
•
3

E

C
•
2

D
•
1

One sees easily that codimension 1 degeneracies are given, for Q(1), by the
vanishing of any of6

det[EB], det[EC], det[B|CD], det[BA|C], det[EBA|ECD] .

6We indicate by X |Y the concatenation of two matrices X, Y with the same number of
rows.
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The third of these measures the independence of the images of B and CD in
the 3-dimensional space attached to the central node; the fourth and fifth are
to be understood similarly. The degrees of the corresponding equations, equal
to 4, 4, 4, 4, and 6, add to 22, and their weights are easily seen to be linearly
independent. Thus these form a complete list of the factors, and the linear
free divisor D is the union of these five, necessarily irreducible components.

For Q(2), four codimension 1 degeneracies are defined by the vanishing of

det[EB], det[CB], det

[

E

DC

]

, DCBA .

One further degeneracy is easier to describe verbally than by an equation
(however, see Section 8 and in particular Example 8.1 below): it is the failure
of general position, in the 3-dimensional space at the central node, of the
three lines im(BA), ker(E), ker(C).

In both cases, each equation of degree 4 has 12 monomials and the equa-
tion of degree 6 has 48. Moreover, the complements of the discriminants
D(1)

⊂ Rep(Q(1)
,d) and D

(2)
⊂ Rep(Q(2)

,d) are isomorphic to one another,
being orbits, with trivial isotropy, of the groups PGl(Q(i)

,d), which are them-
selves isomorphic to one another. However, the two discriminants are not
isomorphic. Essentially, this is because the equations involve different num-
bers of variables. In the first case, the five equations involve, respectively,
12, 12, 14, 14, and 22 variables, while in the second the five equations in-
volve 12, 12, 14, 16 and 20 variables. A Macaulay calculation confirms that
the spaces of vector fields with constant coefficients tangent to the germs
at 0 ∈ Rep(Q(i)

,d) of the five components have dimensions 10, 10, 8, 8, and
0 in the first case, and 10, 10, 8, 6, and 2 in the second. Any isomorphism
D(1) ∼= D

(2) must map 0 to 0, since because of the presence of the Euler field,
in each case 0 is the only point where all of the vector fields in Der(− logD(i))
vanish. It follows that these dimensions are geometrical invariants: the just
exhibited dimension corresponding to the irreducible component D

(i)

j
ofD(i) is

the maximum dimension of a non-singular factor in a product decomposition
(D

(i)

j
, 0) ∼= (E

(i)

j
, 0)× (F

(i)

j
, 0) ([10]).

Proposition 7.4. Let Q be the quiver whose nodes consist of n + 1 sources

surrounding one sink, with an arrow going from each source to the sink. The

discriminant with respect to the dimension vector that assigns 1 to each of the

sources and n to the sink is a linear free divisor. It is of the form ∆1 · · ·∆n+1,

where the ∆
i
are the maximal minors of a generic n× (n+ 1)–matrix.

Proof. We can identify Rep(Q,d) with the space of n × (n + 1)–matrices,
with the matrix of each of the arrows determining a column. The degree
of the discriminant D equals n(n + 1). The generic representation describes
n + 1 distinct lines in a vector space of dimension n, with no n of them
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lying in a hyperplane. Such a representation is indecomposable and lies in
an open orbit, with the group Gl(n) acting transitively on the set of such
line configurations in general position. Accordingly, the dimension vector is
a real Schur root. There are n + 1 codimension 1 degeneracies, each one
determined by the vanishing of an n×n minor of the n× (n+1) matrix. The
product of these minors has degree n(n + 1), equal to the degree of D, and
the weights, assigning −1 to each source contributing to the minor, 0 to the
remaining source, and 1 to the sink, are clearly linearly independent. Thus
each is present in det d̃M

M
with multiplicity 1.

Note that from Theorem 6.1 we recover the classical result that these maximal
minors are algebraically independent.

Example 7.5. Consider the four quivers shown below, in which the under-
lying undirected graph is the extended Dynkin diagram of type ˜D4. Assign
to each the dimension vector with 1 at each outer node and 3 at the central
node. According to Kac’s result quoted as Proposition 3.7 above, the dimen-
sion vector shown is a real root. In (i)–(iii), it is also a Schur root, but in case
(iv), it is not. In case (i), the discriminant is a linear free divisor, according
to Proposition 7.4 above, but in cases (ii) and (iii) this fails. In case (iv), the
discriminant is the whole space, and there is no rigid representation.

•

A

•
B
• •

D

•

C

(i)

•

•
B
•

A

•
D

•

C

(ii)

•

A

• •
B

D

C

•

•

(iii)

•

A

• •
B

D
•

•

C

(iv)

In case (ii), there is a modulus attached to the codimension 1 degeneracy in
which the images of B,C and D lie in a plane P ; these three lines, together
with the fourth line P ∩ker A, determine a cross-ratio. Any representation V
of this type therefore has T 1

V
of dimension (at least) 2, and so the multiplicity

of the corresponding component in D is also at least 2. In fact it is exactly
2: the remaining three components of D are det AB, det AC, det AD, each
of degree 2. Together with twice the degree of det[B|C|D] these add up to
12, the degree of the (non-reduced) equation det d̃M

M
of D. As the four com-

ponents described have linearly independent weights, the multiplicity of the
non-reduced component is exactly 2.

Case (iii), obtained by reversing all of the arrows, is dual to (ii): here
the non-reduced component of D is where the kernels of the three outgoing
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arrows B,C,D meet along a line L. Together with the plane L+ im A, these
make four planes in the pencil of planes containing L, and thus once again
determine a cross ratio.

In the fourth quiver, the given dimension vector is not a Schur root. For
there is no open orbit. In a general representation V , im A and im C span a
plane P . The intersections with P of ker B and ker D determine two further
lines in P , and thus a cross-ratio. Since thus dim Ext1

Q
(V, V ) ≥ 1, it follows

that dim Hom
Q
(V, V ) ≥ 2, and V must be decomposable. Indeed, it is easily

verified that the intersection ker B∩ker D, concentrated on the central node,
splits off. By Kac’s theorem, there is exactly one orbit of indecomposable
representations. We invite the reader to find it.

Proposition 7.6. Suppose that d is a real Schur root of the connected quiver

Q, and let Qopp be obtained from Q by reversing all of the arrows. If the

discriminant in Rep(Q,d) is a linear free divisor then the same holds in

Rep(Qopp
,d).

Proof. This is essentially projective duality. Transposition determines an iso-
morphism of representation spaces Rep(Q,d) → Rep(Qopp

,d) which maps
orbits to orbits.

Example 7.7. Suppose Q is a quiver and x ∈ Q0 is a node. Construct a new
quiver Q

x
by replacing the node x by a pair of nodes x′, x′′ connected by an

arrow F from x′ to x
′′, and attaching the arrows previously attached to x

either to x′ or to x′′. Two possible outcomes of this process are shown in the
figure below. If d is any dimension vector for Q, we define a dimension vec-
tor d

x
for Q

x
by setting d

x
(y) = d(y) if y 6= x

′
, x

′′, d
x
(x′) = d

x
(x′′) = d(x).

Then 〈d
x
,d

x
〉 = 〈d,d〉. If the generic representation in Rep(Q,d) is indecom-

posable, then the same is true in Rep(Q
x
,d

x
), since generically V (F ) is an

isomorphism. So it is reasonable to hope that if 〈d,d〉 = 1 and D ⊂ Rep(Q,d)
is a linear free divisor, then the discriminant in Rep(Q

x
,d

x
) is also a linear free

divisor. The following examples show that this is sometimes but not always
the case.

The quivers Q2 and Q3 shown below are obtained from Q1 by the opera-
tion just described. Assign to Q1 the dimension vector d with 1’s at all the
sources and 4 at the central sink, and define d

x
accordingly. By 7.4, the dis-

criminant D1 ⊂ Rep(Q1,d) is a linear free divisor with components given by
the vanishing of

det[A|B|C|D], det[A|B|C|E], det[A|B|D|E], det[A|C|D|E], det[B|C|D|E] .

In Rep(Q2,dx), these become

det[FA|FB|FC|D], det[FA|FB|FC|E], det[FA|FB|D|E],

det[FA|FC|D|E], det[FB|FC|D|E], det F .
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In Rep(Q3,dx), they become

det[A|B|C|FD], det[A|B|C|FE], det[A|B|FD|FE],

det[A|C|FD|FE], det[B|C|FD|FE], det F .

The degrees of the (reduced) discriminants D2 ⊂ Rep(Q2,dx) and D3 ⊂

Rep(Q3,dx) are thus 36 and 32 respectively. So D2 is a linear free divisor,
whereas D3 is not. The exponent of det F in the canonical equation ∆3 is 2.

•

A

•

D
•

B
• x

•

C

•
E

Q1

•

A

•

D
•

B
•

x
′

F
• x

′′

•

C

•

E

Q2

•

A

•

D
•

B
•

x
′′
• x

′F

•

C

•

E

Q3

One can easily show, by the same technique of counting degrees, that if one
performs this operation on the central node in the quiver of Proposition 7.4,
then one obtains a linear free divisor if and only if just two of the arrows
coming from the outer nodes are attached to x′′, and the rest are attached to
x′.

By applying the same construction to Dynkin quivers and their roots, one
can obtain further examples of linear free divisors. In particular, one easily
deals with the case D

n
in this way:

Proposition 7.8. Let Q be the Dynkin quiver of type Dn
with the following

orientation

•

1

A

•

2

C1
•

2
· · · •

2

C
n−4
•

2

D
•

1

•
1 B

The indicated dimension vector d is the highest root of D
n
. The discriminant

in Rep(Q,d) is a linear free divisor of degree 4n− 10 with n− 1 factors

det[A|B], detC1, . . . , detC
n−4, DCn−4 · · ·C1A, DCn−4 · · ·C1B ,

where the first n− 3 factors are of degree 2, the last two of degree n− 2.
Changing the orientation of arrows in Q results in an isomorphic linear

free divisor.
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Proof. The criterion 6.3 shows immediately that the factors are correct, as
they represent semi-invariants with linearly independent weights. For the last
assertion, note that changing the direction of the arrow underlying the matrix
C
i
, say, results in the same linear free divisor as the one already established,

provided one replaces C
i
by its adjoint matrix. Similarly, changing, say, the

direction of the arrow underlying A, amounts to replacing A = (a1, a2) by
A′ = (a2,−a1) in the above factors, and the situation for B,D is analogous.

8 Equations for D

To find equations for D in general, one can use the following recipe due to
Schofield [30] that is based on his result 6.5 above. We quote it in the slightly
simplified form that is all that we require here. Assume that Q is a finite
connected quiver without oriented cycles and fix the sincere real Schur root
d and a generic representation V ∈ Rep(Q,d).

To apply 6.5, one looks for roots e of Q such that 〈e,d〉 = 0, and com-
putes, for generic W in Rep(Q, e), the polynomial cW . If Hom

Q
(W,V ) 6= 0,

then the square matrix underlying cW
V

has a nontrivial kernel and c
W van-

ishes on the open orbit, thus, identically. In view of this, one needs only to
consider representations W that lie in the left7 orthogonal category ⊥

V , the
full subcategory of all those finite dimensional representations W of Q that
satisfy

Hom
Q
(W,V ) = Ext1

Q
(W,V ) = 0 .

Schofield shows that this left orthogonal category is equivalent to the category
of finite dimensional representations of some new quiver Q′ that has n − 1
nodes and contains no oriented cycles. In [8] (Lemma 1) it is pointed out that
a short exact sequence

0 → W
′
→ W → W

′′
→ 0

of representations of Q leads either to the factorisation

c
W = c

W
′′

c
W

′

if 〈W ′
, V 〉 = 〈W ′′

, V 〉 = 0, or to the conclusion that cW = 0 if 〈W ′
, V 〉 < 0.

So, if the generic representation in Rep(Q, e) is not simple in ⊥
V , the semi-

invariant we obtain will either be zero or a non-trivial product of others.
Accordingly, one needs to consider only the n − 1 simple objects W in

7One may as well work throughout with the right orthogonal category V ⊥, the treatment
is symmetric.
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⊥
V , and those must provide the factors of the discriminant via the as-

sociated determinants cW . Indeed, the dimension vectors e
i

of the simple
objects W

i
, for i = 1, ..., n − 1 form the unique basis of the free abelian

semigroup of dimension vectors NQ
′

0 for ⊥
V , and their associated characters

〈e
i
, ?〉 = w(cWi) = −e

i
+ inei

= −e
i
E, see 6.6, form the unique basis of

the free abelian semigroup of weights for the semi-invariants of Rep(Q,d).
Conversely, knowing the weights w

i
of the generating semi-invariants, one

may calculate the dimension vectors e
i
through e

i
= −w

i
(E−1), with E−1 as

exhibited in 3.3.

The map NQ
′

0 → NQ0 that maps the ith basis vector to e
i
is an isometry

with respect to the Euler forms onQ′ andQ, and as the simple representations
for Q′ have real Schur roots as their dimension vectors, the same must hold
true for the dimension vectors e

i
. Thus, in case of a Dynkin quiver Q, we

simply need to go through the list of positive roots that are perpendicular to
d and find among them the uniquely determined basis for the semigroup N

Q
′

0 .

More generally, if d is the dimension vector of a preprojective or pre-

injective representation, as is the case for any Schur root of a Dynkin quiver,
(see, e.g. [1, VIII.1] for the definitions and result), then one can read off the
roots e

i
from the Auslander–Reiten quiver of Q, as explained in [16, Proof of

Proposition 2.1]. In that case, the quiver Q′ is obtained from Q by deletion
of a node along with its incident arrows and possibly some changes in the
orientation of the remaining arrows. It is noteworthy that conversely for any
quiver, any dimension vector of a preprojective or pre-injective representation
is a real Schur root, thus providing a huge reservoir for potentially linear
free divisors. Given that in this situation one can easily determine the simple
objects of the orthogonal category from the Auslander–Reiten quiver, it seems
reasonable to expect that one should be able to decide in general which of
these roots give rise to linear free divisors.

We now turn to the two most complex Dynkin quivers, those of type E7

and E8, and demonstrate how the algorithm described here works in practice.

Example 8.1. Consider the Dynkin quiver of type E7 with Schur root as
shown - the highest root of E7.

•2

F

•

1

A
•

2

B
•

3

C
•

4
•

3

D
•

2

E
V

The representation space has dimension 46 = 48 − 2 as the associated bi-
nary polyhedral group, the binary octahedral group, is a double cover of the
symmetric group on four letters.
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By [18, p.153] the discriminant D has 6 irreducible components. Of these,
five may be found by inspection: they are the four described by the equations

det[CBA|D], det[CB|DE], det[F |DE], det[CB|F ],

and the component corresponding to the degeneracy im C∩im D∩im F 6= 0,
for which an equation is less obvious. One further component remains to be
found. We obtain all of them using Schofield’s recipe. Consider first

•2

F

•
1 A

•
2 B

•
3 C

•
4

•
3D

•
2E

V

•

1

S1

a

T1

•

1

S2

b

T2

•

1

S3

c

T3

•

1

S4

•

1

S5

d

T4

W

and note that the dimension vector e of W is a root with support a Dynkin
diagram of type A5, the “type” of e, that satisfies 〈e,d〉 = 0. We have

d
W

V
(S1, . . ., S5) = (AS1 − S2a, BS2 − TS3b, CS3 − S4c,DS5 − S4d).

Thus dW
V

has matrix
A −aI2 0 0 0
0 B −bI3 0 0
0 0 C −cI4 0
0 0 0 −dI4 D

where the five columns refer to the five maps S1, . . ., S5 and the four rows to
the four maps T1, . . ., T4. Here for each p, q we have ordered the natural basis
vectors E

ij
, 1 ≤ i ≤ q, 1 ≤ j ≤ p, of Hom(kp, kq) lexicographically. Assuming

abc 6= 0, row operations transform this successively to

A −aI2 0 0 0
1

a
BA 0 −bI3 0 0
0 0 C −cI4 0
0 0 0 −dI4 D

,

A −aI2 0 0 0
1

a
BA 0 −bI3 0 0

1

ab
CBA 0 0 −cI4 0
0 0 0 −dI4 D

,

A −aI2 0 0 0
1

a
BA 0 −bI3 0 0

1

ab
CBA 0 0 −cI4 0

−d

abc
CBA 0 0 0 D

so that C(V,W ) = ±d det[CBA|D], and fixing d 6= 0 we obtain the first of
the degeneracies listed above. Note that the indicated root e underlying W
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predicts, by 6.6, the following weight of the semi-invariant cW :

w(cW ) = −e + ine :
0

−1 0 0 1 −1 0

which is indeed the weight of det[CBA|D]. The reader will have no difficulty
checking that the next three semi-invariants listed above can be obtained, by
the same procedure, from the first three roots in the diagram

◦ 0

◦

0
•

1
•

1
•

1
•

1
•

1

• 1

◦

0
◦

0
◦

0
•

1
•

1
•

1

• 1

◦

0
•

1
•

1
•

1
◦

0
◦

0

• 1

◦

0
◦

0
•

1
•

1
•

1
◦

0

The last root gives rise to the matrix

C −cI4 0 0
0 −dI4 D 0
0 −fI4 0 F

and assuming c 6= 0, column and row operations transform this into

0 −cI4 0 0

−
d

c
C 0 D 0

−
f

c
C 0 0 F

If also df 6= 0, then this determinant vanishes if and only if that of

−C D 0
−C 0 F

vanishes, which is the case when imC ∩ imD ∩ imF 6= 0; this can be seen by
noting that if Cu = Dv = Fw then the vector (u, v, w)t lies in its kernel, and
vice versa.

The sixth and last component of D is given by the vanishing of the semi-
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invariant arising from the root represented by W in the diagram

•2

F • 1

S7

T6

f

•
1 A

•
2 B

•
3 C

•
4

•
3D

•
2E

V

•

1

S1

T1

a
•

1

S2

T2

b
•

2

S3

T3

c
•

2

S4

•

1d

T4

S5

•

1

T5

S6

e W

The resulting determinant is

A −aI2 0 0 0 0 0 0 0
0 B −b11I3 −b21I3 0 0 0 0 0
0 0 C 0 −c11I4 −c21I4 0 0 0
0 0 0 C −c12I4 −c22I4 0 0 0
0 0 0 0 −d11I4 −d21I4 D 0 0
0 0 0 0 0 0 −eI3 E 0
0 0 0 0 −f11I4 −f21I4 0 0 F

where the columns and rows refer, in this order, to the maps S1. . ., S7 and
T1, . . ., T6 respectively. Row and column operations, and the deletion of rows
and columns containing only an invertible matrix, transform this to the matrix

1

b11a
CBA 0 (c12b21 − c11b11)I4 (c22b21 − c21b11)I4 0 0

0 C −c12I4 −c22I4 0 0
0 0 −d11I4 −d21I4

1

e
DE 0

0 0 −f11I4 −f21I4 0 F

and now permuting columns brings it to the form

CBA 0 0 0 λ1I4 µ1I4

0 C 0 0 λ2I4 µ2I4

0 0 DE 0 λ3I4 µ3I4

0 0 0 F λ4I4 µ4I4

where the λ
i

and µ
j

are polynomials in the coefficients a, b, . . . of the rep-
resentation W , and we have multiplied some rows and columns by other
such polynomials to simplify the expression (since we choose a generic W
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in Rep(Q, e) to obtain the polynomial CW , this multiplication has the effect
only of multiplying CW by a scalar).

The geometrical significance of the vanishing of the determinant is that
the three lines im DE ∩ im C, im F ∩ im C and im CBA fail to span im C.
The reader will note the similarity in the geometric description of the last two
semi-invariant factors. This can be understood by looking at their weights.
They are given by

−1
0 0 −1 2 −1 0

and
−1

−1 0 −1 2 0 −1

According to Derksen and Weyman [8, p.477, Step 2], if the weight of W is
not sincere, as in these cases, one may simplify the calculation by removing
successively nodes not in the support, adding instead one arrow for each pair
of ingoing and outgoing arrows. In the first case at hand, this produces a
weight with support a Dynkin quiver of type D4, in the second a weight of
type D5. For the first four orthogonal roots listed, the type of the weight
equals A3, explaining the similarity in the description of the corresponding
semi-invariants. Once one has modified the quiver in this fashion, one can then
simply calculate the corresponding semi-invariant on the new quiver, where
one drops from d as well the nodes not in the support of the weight, and
substituting at the end the actual composition of the maps along each pair
of ingoing and outgoing arrow into the resulting semi-invariant. Revisiting,
for example, the first orthogonal root considered above and its corresponding
weight of type A3; see e.g. the table below; it becomes thus transparent that
the semi-invariant obtained, det[CBA|D], has indeed to be a polynomial in
the entries of CBA and D.

We can summarize the information gathered so far for the discriminant
in the representation variety of the highest root of E7 in the given orientation
through the following table, where we list the opposite of the weights to
display fewer minus signs:

Polynomial Deg Root⊥d
−Weight

Type

(Root, Weight)

P1 = det[CBA|D] 6
0

1 1 1 1 1 0
0

1 0 0 −1 1 0
(A5, A3)

P2 = det[CB|DE] 8
0

0 1 1 1 1 1
0

0 1 0 −1 0 1
(A5, A3)

P3 = det[F |DE] 6
1

0 0 0 1 1 1
1

0 0 0 −1 0 1
(A4, A3)

P4 = det[CB|F ] 6
1

0 1 1 1 0 0
1

0 1 0 −1 0 0
(A4, A3)
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P5 = det

[

−C D 0
−C 0 F

]

8
1

0 0 1 1 1 0

1

0 0 1 −2 1 0
(D4, D4)

P6 12
1

1 1 2 2 1 1

1

1 0 1 −2 0 1
(E7, D5)

∆ = (unit)P1 · · ·P6 46
4

2 2 2 −8 2 3

The following interlude will allow us to find the equations for semi-invariants
such as P5 or P6 above in a more direct form, using some commutative algebra.

9 An Interlude from Commutative Algebra

Let 0 → M
j

−→ R
m+a

ϕ

−→ R
a

p

−→ T → 0 be an exact sequence of modules over
a commutative normal (and noetherian) domain R, with integers m, a > 0,
and T a torsion R–module. Assume given moreover an R–linear map ψ :
Rm+a

→ R
m. The module M has a (constant) rank, equal to m, and its de-

terminant is by definition the reflexive R–module detM = (Λm

R
M)∨∨, where

(−)∨ denotes the R–dual module. In words, detM is the reflexive hull of the
mth exterior power of M over R. It is isomorphic to R, and the composition
ψj induces an R–linear map det(ψj) : R ∼= detM → detRm ∼= R. At issue
now is to find a closed form for that determinant.

Lemma 9.1. The determinant of ψj satisfies det(ψj) = det(ψ, ϕ).

Proof. Consider the following commutative diagram whose rows are exact

0 M
j

ψj

R
m+a

ϕ

(ψ,ϕ)

R
a

p

T 0

0 R
m

in1

R
m
⊕ R

a
pr2

R
a 0

The multiplicativity of the determinant shows first that detM ∼= R and then
yields det(ψj) = det(ψ, ϕ).

Example 9.2. We use this result to find a closed form for the semi-invariant
P6 for the highest weight of E7 described in the last section. Namely, with
the same notations as there, that invariant measures whether the three lines
im DE ∩ im C, im F ∩ im C and im CBA span im C. To translate this into
multilinear algebra, note that it is equivalent to say that the fibre product
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X of DE with C over their common target, the fibre product Y of F with
C over the common target, and the image Z of BA do not span the domain
of C. Each of X, Y, Z is a rank one submodule of the domain of C, which
is a free module of rank 3 over R, the ring of the representation variety. We
thus expect the corresponding invariant to be det[X|Y |Z], and the preceding
lemma lets us make this precise: In the following diagram, the top row is a
direct sum of three short exact sequences of graded R–modules

0

X

⊕

Y

⊕

R(−2)

(i1,i2,BA)

(i1,j1)

⊕
(i2,j2)

⊕
idR

R
3
⊕ R

2

⊕

R3
⊕ R(−1)2

⊕

R(−2)

M

(C,−F )

⊕
(C,−DE)

⊕
0

R(1)4

⊕

R(1)4

⊕

0

0

0 R
3

in1

R
3

⊕

R(1)4

⊕

R(1)4

pr23

R(1)4

⊕

R(1)4

0

where the maps i1, i2, j1, j2, in1 are the natural inclusions, pr23 the projection
onto the sum of second and third factor, and the matrix M is of the form:

R
3
R

2
R

3
R(−1)2

R(−2)
R

3
I 0 I 0 BA

R(1)4
C −F 0 0 0

R(1)4 0 0 C −DE 0

The desired semi-invariant is now det(i1, i2, BA), which equals the determi-
nant of M in view of the lemma above. Subtracting (a multiple of) the first
column from the third and fifth results in the following simpler form

R
3
R

2
R

3
R(−1)2

R(−2)
R

3
I 0 0 0 0

R(1)4
C −F −C 0 −CBA

R(1)4 0 0 C −DE 0

whence the desired semi-invariant is seen to be the determinant of an 8 × 8
matrix,

P6 = det

[

F C 0 CBA

0 C −DE 0

]

whose degree can be read off to be 12 as stated in the table above.
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10 The Case of E8 with the Centre as Only

Sink

As our final example, we determine the discriminant in the representation
variety that belongs to the highest root of the Dynkin quiver of type E8 with
all arrows oriented towards the central trivalent vertex:

•
2 A

•
4 B

•
6

•
5D

•
4E

•
3F

•
2G

•

3

C

The capital letters A, ..., G stand for the corresponding matrices of in-
dependent indeterminates, and the coordinate ring of Rep(E8.d) is R =
K[A,B,C,D,E, F,G], a polynomial ring in 118 = 120 − 2 variables, where
120 is the order of the binary icosahedral group.

We will also need below three additional auxiliary vertices, denoted by
◦, and corresponding maps X, Y, Z, as indicated by the dashed arrows here:

•
2 A

•
4 B

•
6

•
5D

•
4E

•
3F

•
2G

◦

1

X

•

3

C

◦

2

Y

◦

1

Z

The map X is the natural one from the fibre product of B and C to the
central node. The fibre product itself is an R–module of rank 1. The map Y

indicated above is the natural one from the fibre product of D and C to the
central node. This fibre product has rank 2. Finally, the map Z is the natural
one from the fibre product of C and DE to the central node. Again, the fibre
product has rank 1.

The discriminant D in question is of degree 118 and has 7 irreducible
components, thus, its canonical equation ∆ is a product of 7 irreducible poly-
nomials P

i
in the entries of the 7 matrices A through G. Moreover, we obtain

from 6.6 that it is a semi-invariant belonging to the weight

−4 −4 12 −2 −2 −2 −3
−6

We can spot immediately three semi-invariants:

P1 = det[BA|DE] , P2 = det[C|DEF ] , P3 = det[B|DEFG] ,

each of degree 12 and belonging to weights of type A3. The remaining four
can be described thus
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• The failure of imX = imB ∩ imC and imD to generate the vector
space at the central node. According to 9.1, the corresponding polyno-
mial is P4 = det[X|D], the determinant of

R(−1)4
R(−1)3

R(−1)5

R
6

B 0 D

R
6

B −C 0

It is of degree 12.

• The failure of imBA, imX, imDEF to generate the vector space at
the central node. Again using 9.1, the corresponding polynomial is P5 =
det[BA|X|DEF ], the determinant of

R(−2)2
R(−1)4

R(−1)3
R(−3)3

R
6

BA B 0 DEF

R
6 0 B −C 0

It is of degree 20.

• The failure of imBA, imY, imDEFG to generate the vector space at
the central node. In this case, the corresponding polynomial is P6 =
det[BA|Y |DEFG], the determinant of

R(−2)2
R(−1)3

R(−1)5
R(−4)2

R
6

BA C 0 DEFG

R
6 0 C −D 0

It is also of degree 20. The three semi-invariants P4 through P6 belong to
weights of type D, as can easily be seen from the geometric description.
Now we turn to the last and biggest one:

• The rank of BA and DEFG is 2, that of X,Z is 1. Their images in the
central vector space are thus expected to generate. The failure will be
measured by the polynomial P7 = det[BA|X|Z|DEFG], which is the
determinant of

R(−2)2
R(−1)4

R(−1)3
R(−1)3

R(−2)4
R(−4)2

R
6

BA C 0 C 0 DEFG

R
6 0 C −D 0 0 0

R
6 0 0 0 C −DE 0

It is of degree 30 and its weight is of type E6.
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We summarize the results again in a table:

Polynomial Deg Root⊥d
−Weight

Type

(Root, Wt)

P1 = det (BA|DE) 12
1 1 1 1 1 0 0

0
1 0 −1 0 1 0 0

0
(A5, A3)

P2 = det (C|DEF ) 12
0 0 1 1 1 1 0

1
0 0 −1 0 0 1 0

1
(A5, A3)

P3 = det (B|DEFG) 12
0 1 1 1 1 1 1

0
0 1 −1 0 0 0 1

0
(A6, A3)

P4 = det (X|D) 12
0 1 1 1 0 0 0

1
0 1 −2 1 0 0 0

1
(D4, D4)

P5 = det (BA|X|DEF ) 20
1 2 2 1 1 1 0

1
1 1 −2 0 0 1 0

1
(E7, D5)

P6 = det (BA|Y |DEFG) 20
1 1 2 2 1 1 1

1
1 0 −2 1 0 0 1

1
(E8, D5)

P7 = det (BA|X|Z|DEFG) 30
1 2 3 2 2 1 1

2
1 1 −3 0 1 0 1

2
(E8, E6)

∆ = (unit)P1 · · ·P7 118
4 4 −12 2 2 2 3

6

Theorem 10.1. The above table is correct.

Proof. Inspection shows that each of the polynomials P
i

is a semi-invariant
and that its weight is as listed. The indicated weights are easily seen to be
linearly independent, and add up to the weight of ∆. Thus, their product
must describe the discriminant up to a unit.
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Derived Categories of Modules and

Coherent Sheaves

Yuriy A. Drozd

Abstract

We present recent results on derived categories of modules and coherent
sheaves, namely, tame–wild dichotomy and semi-continuity theorem for
derived categories over finite dimensional algebras, as well as explicit
calculations for derived categories of modules over nodal rings and of
coherent sheaves over projective configurations of types A and Ã.

This paper is a survey of some recent results on the structure of derived
categories obtained by the author in collaboration with Viktor Bekkert and
Igor Burban [6, 11, 12]. The origin of this research was the study of Cohen–
Macaulay modules and vector bundles by Gert-Martin Greuel and myself
[27, 28, 29, 30] and some ideas from the work of Huisgen-Zimmermann and
Saoŕın [42]. Namely, I understood that the technique of “matrix problems,”
briefly explained below in subsection 2.3, could be successfully applied to the
calculations in derived categories, almost in the same way as it was used in
the representation theory of finite-dimensional algebras, in study of Cohen–
Macaulay modules, etc. The first step in this direction was the semi-continuity
theorem for derived categories [26] presented in subsection 2.1. Then Bekkert
and I proved the tame–wild dichotomy for derived categories over finite di-
mensional algebras (see subsection 2.2). At the same time, Burban and I
described the indecomposable objects in the derived categories over nodal
rings (see Section 3) and projective configurations of types A and Ã (see Sec-
tion 4). Note that it follows from [23, 29] that these are the only cases, where
such a classification is possible; for all other pure noetherian rings (or projec-
tive curves) even the categories of modules (respectively, of vector bundles)
are wild. In both cases the description reduces to a special class of matrix
problems (“bunches of chains” or “clans”), which also arises in a wide range
of questions from various areas of mathematics.

1991 Mathematics Subject Classification. 18E30, 16G60, 16G50, 15A21, 16G30, 14H60
Key words. Derived category, tame–wild dichotomy, semi-continuity, nodal rings, projec-

tive configurations, vector bundles, Cohen-Macaulay modules
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I tried to explain the backgrounds, but, certainly, only sketched proofs,
referring for the details to the original papers cited above.

1 Generalities

We first recall some definitions. Let S be a commutative ring. An S-category
is a category A such that all morphism sets A (A,B) are S-modules and the
multiplication of morphisms is S-bilinear. We call A

• local if every object A ∈ A decomposes into a finite direct sum of
objects with local endomorphism rings;

• ω-local if every object A ∈ A decomposes into a finite or countable
direct sum of objects with local endomorphism rings;

• fully additive if any idempotent morphism in A splits, that is defines
a decomposition into a direct sum;

• locally finite (over S) if all morphism spaces A (A,B) are finitely gen-
erated S-modules. If S is a field, a locally finite category is often called
locally finite dimensional. If, moreover, A has finitely many objects, we
call it finite (over S). Especially, if A is an S-algebra (i.e. a S-category
with one object), we call it a finite S-algebra.

• If A is fully additive and locally finite over S, we shall call it a falf (S-)
category.

Mostly the ring S will be local and complete noetherian ring. Then, evidently,
every falf S-category is local; moreover, an endomorphism algebra A (A,A)
in a falf category is a finite S-algebra. It is known that any local (or ω-local)
category is fully additive; moreover, a decomposition into a direct sum of
objects with local endomorphism rings is always unique; in other words, any
local (or ω-local) category is a Krull–Schmidt one, cf. [4, Theorem 3.6].

For a local category A we denote by radA its radical, that is the set
of all morphisms f : A → B , where A,B ∈ ObA , such that no com-
ponent of the matrix presentation of f with respect to some (hence any)
decomposition of A and B into a direct sum of indecomposable objects is
invertible. Note that if f /∈ radA , there is a morphism g : B → A such that
fgf = f and gfg = g . Hence both gf and fg are nonzero idempotents,
which define decompositions A ' A1 ⊕ A2 and B ' B1 ⊕ B2 such that the
matrix presentation of f with respect to these decompositions is diagonal:
(

f1 0
0 f2

)

, and f1 is invertible. Obviously, if A is locally finite dimensional,

then rad A (A,B) coincide with the set of all morphisms f : A → B such
that gf (or fg ) is nilpotent for any morphism g : B → A .
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We denote by C (A ) the category of complexes over A , i.e. that of dia-
grams

(A•, d•) : . . . −−−→ A
n+1

dn+1

−−−→ A
n

dn
−−−→ A

n−1

dn−1

−−−→ . . . ,

where A
n
∈ ObA , d

n
∈ A (A

n
, A

n−1), with relations d
n
d

n+1 = 0 for all n.
Sometimes we omit d• denoting this complex by A•. Morphisms between
two such complexes, (A•, d•) and (A′

•, d
′
•) are, by definition, commutative

diagrams of the form

φ• :

. . . −−−→ A
n+1

dn+1

−−−→ A
n

dn
−−−→ A

n−1

dn−1

−−−→ . . .

. . . φn+1





y

φn





y





y

φn−1 . . .

. . . −−−→ A
′
n+1

d
′

n+1

−−−→ A
′
n

d
′

n
−−−→ A

′
n−1

d
′

n−1

−−−→ . . .

Note that we use “homological” notations (with down indices) instead of more
usual “cohomological” ones (with upper indices). Two morphisms, φ• and ψ•,
between (A•, d•) and (A′

•, d
′
•) are called homotopic if there are morphisms

σ
n

: A
n
→ A

′
n+1

(n ∈ N) such that φ
n
− ψ

n
= d

′
n+1

σ
n

+ σ
n−1dn

for all n. We
denote it by φ ∼ ψ. We also often omit evident indices and write, for instance,
φ− ψ = d′σ + σd. The homotopy category H (A ) is, by definition, the factor
category C (A )/C∼0, where C∼0 is the ideal of morphisms homotopic to zero.

Suppose now that A is an abelian category. Then, for every complex
(A•, d•), its homologies H• = H•(A•, d•) are defined, namely H

n
(A•, d•) =

Ker d
n
/ Im d

n+1. Every morphism φ• as above induces morphisms of homolo-
gies H

n
(φ•) : H

n
(A•, d•)→ H

n
(A′

•, d
′
•). It is convenient to consider H•(A •, d•)

as a complex with zero differential and we shall usually do so. Then H• be-
comes an endofunctor inside C (A ). If φ• ∼ ψ•, then H•(φ•) = H•(ψ•), so
H• can be considered as a functor H (A ) → C (A ). We call φ• a quasi-

isomorphism if H•(φ•) is an isomorphism. Then we write φ• : (A•, d•) ≈
(A′

•, d
′
•) or sometimes (A•, d•) ≈ (A′

•, d
′
•) if φ• is not essential. The derived

category D (A ) is defined as the category of fractions (in the sense of [34])
H (A )[Q−1], where Q is the set of quasi-isomorphisms. In particular, the
functor of homologies H• becomes a functor D (A ) → C (A ). Note that a
morphism between two complexes with zero differential is homotopic to zero
if and only if it is zero, and is a quasi-isomorphism if and only if it is an iso-
morphism. Moreover, any morphism between such complexes in the derived
category is equal (in this category) to the image of a real morphism between
these complexes in C (A ). Thus we can consider the category C 0(A ) of com-
plexes with zero differential as a full subcategory of H (A ) or of D (A ). In
particular, we can (and shall) identify every object A ∈ A with the complex
A• such that A0 = A, A

n
= 0 for n 6= 0. It gives a full embedding of A into

H (A ) or D (A ).
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We denote by C−(A ) (respectively, C+(A ), C b(A ) ) the categories of
right bonded (respectively, left bounded, (two-side) bounded) complexes, i.e.
such that A

n
= 0 for n � 0 (respectively, n � 0 or both). Correspond-

ingly, we consider the right (left, two-side) bounded homotopy categories
H −(A ),H +(A ),H b(A ) and right (left, two-side) bounded derived cate-
gories D−(A ),D+(A ),D b(A ).

The categories C (A ),H(A ),D (A ), as well as their bounded subcate-
gories, are triangulated categories [38]. Namely, the shift maps a complex A•

to the complex A•[1], where A
n
[1] = A

n−1.
1 A triangle is a sequence iso-

morphic (as a diagram in the corresponding category) to a sequence of the
form

A•

f•

−−−→ B•

g•

−−−→ Cf•
h•

−−−→ A•[1],

where f• is a morphism of complexes, Cf• is the cone of this morphism, i.e.
Cf

n
= A

n−1 ⊕ Bn
, the differential Cf

n
→ Cf

n−1 = A
n−2 ⊕ Bn−1 is given by

the matrix

(

−dn−1 0
f

n−1 d
n

)

; g(b) = (0, b) and h(a, b) = a.

If A = R -Mod, the category of modules over a pre-additive category
R (for instance, over a ring), the definition of the right (left) bounded de-
rived category can be modified. Namely, D−(R -Mod) is equivalent to the
homotopy category H −(R -Proj), where R -Proj is the category of projec-
tive R -modules. Recall that a module over a pre-additive category R is a
functor M : R → Ab, the category of abelian groups. Such a module is pro-
jective (as an object of the category R -Mod) if and only if it is isomorphic
to a direct summand of a direct sum of representable modules A A = A (A, )
(A ∈ ObA ). Just in the same way, the left bounded category D +(R -Mod) is
equivalent to the homotopy category H +(R -Inj), where R -Inj is the category
of injective R -modules. If the category R is noetherian, i.e. every submodule
of every representable module is finitely generated, the right bounded derived
category D−(R -mod), where R -mod denotes the category of finitely gener-
ated R -modules, is equivalent to H −(R -proj), where R -proj is the category
of finitely generated projective R -modules.

In general, it is not true that D b(R -Mod) is equivalent to H b(R -Proj)
(or to H b(R -Inj) ). For instance, a projective resolution of a module M ,
which is isomorphic to M in D (R -Mod), can be left unbounded. Never-
theless, there is a good approximation of the two-side derived category by
finite complexes of projective modules. Namely, consider the full subcat-
egory C (N) = C (N)(R ) ⊆ C b(R -proj) consisting of all bounded complexes
P• such that P

n
= 0 for n > N (note that we do not fix the right bound).

We say that two morphisms, φ•, ψ• : P• → P
′
•, from C (N) are almost ho-

motopic and write φ
N

∼ ψ if there are morphisms σ
n

: P
n
→ P

′
n+1

such that

1Note again the homological (down) indices here.
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φ
n
− ψ

n
= d

′
n+1

σ
n

+ σ
n−1dn

for all n < N (not necessarily for n = N). We
denote by H (N) = H (N)(A ) the factor category C (N)

/C N
∼0

, where C N
∼0

is
the ideal consisting of all morphisms almost homotopic to zero. There are
natural functors I

N
: H (N)

→H (N+1). Namely, for a complex P• ∈H (N)

find a homomorphism d
N+1 : P

N+1 → P
N

, where P
N+1 is projective and

Im d
N+1 = Ker d

N
. Then the complex

I
N
P• : P

N+1

dN+1

−−−→ P
N

dN
−→ P

N−1 → . . .

is uniquely defined up to isomorphism in H (N+1). Moreover, any mor-
phism φ• : P• → P

′
• from H (N) induces a morphism I

N
φ• : I

N
P• → IN

P
′
•

which coincides with φ• for all places n ≤ N . This morphism is also
uniquely defined as a morphism from H (N+1). It gives the functor I

N
. One

can easily verify that actually all these functors are full embeddings and
D b(R -Mod) ' lim

−→N

H (N)(R ). If R is noetherian, the same is true for the

category D b(R -mod) if we replace everywhere R -Proj by R -proj.
One can also consider the projection E

N
: H (N+1)

→H (N) which is de-
fined by erasing the term P

N+1 in a complex P• ∈H (N+1) and show that
D−(R -Mod) ' lim

←−N

H (N)(R ).
Suppose now that A is a falf category over a complete local noethe-

rian ring S. Then, evidently, the bounded categories C b(A ) and H b(A ) are
also falf categories, hence Krull-Schmidt categories. In [11, Appendix A] it
is proved that the same is true for unbounded categories C (A ) and H (A ).
The proof is based on the following analogue of the Hensel lemma (cf. [11,
Corollary A.5]).

Lemma 1.1. Let Λ be a finite algebra over a local noetherian ring S with

maximal ideal m and a ∈ Λ. For every n ∈ N there is a polynomial g(x) ∈ S[x]
such that

• g(a)2
≡ g(a) mod m

n+1;

• g(e) ≡ e mod m
n for every element e of an arbitrary finite S-algebra

such that e2
≡ e mod m

n;

• g(a) ≡ 1 mod m if and only if a is invertible;

• g(a) ≡ 0 mod m if and only if a is nilpotent modulo m.

Theorem 1.2. Suppose that S is a complete local noetherian ring with max-

imal ideal m. If A is a falf category over S, the categories C (A ) and

H (A ) are ω-local (in particular, Krull–Schmidt). Moreover, a morphism

f• : A• → B• from one of these categories belongs to the radical if and only

if all components f
n
g

n
(or g

n
f

n
) are nilpotent modulo m for any morphism

g• : B• → A• .



84. Y.A. Drozd

Proof. Let a• be an endomorphism of a complex A• from C (A ) . Consider
the sets I

n
⊂ Z defined as follows: I0 = { 0 }, I2k

= { l ∈ Z | − k ≤ l ≤ k }

and I2k−1 = { l ∈ Z | − k < l ≤ k }. Obviously,
⋃

n
I
n

= Z , I
n
⊂ I

n+1 and
I
n+1\In consists of a unique element l

n
. Using corollary 1.1, we can construct

a sequence of endomorphisms a
(n)

• such that, for each i ∈ I
n
,

• (a
(n)

i
)2
≡ a

(n)

i
mod m

n;

• a
(n+1)

i
≡ a

(n)

i
mod m

n;

• a
(n)

i
is invertible or nilpotent modulo m if and only if so is a

i
.

Then one easily sees that setting u
i

= lim
n→∞ a

(n)

i
, we get an idempotent

endomorphism u• of A•, such that u
i
≡ 0 mod m (u

i
≡ 1 mod m) if and

only if a
i
is nilpotent modulo m (respectively a

i
is invertible).

Especially, if either one of al
is neither nilpotent nor invertible modulo

m, or one of a
l

is nilpotent modulo m while another one is invertible, then
u• is neither zero nor identity. Hence the complex A• decomposes. Thus A•

is indecomposable if and only if, for any endomorphism a• of A• , either a•

is invertible or all components a
n

are nilpotent modulo m. Since all algebras
EndA

n
/m EndA

n
are finite dimensional, neither product αβ, where α, β ∈

EndA
n

and one of them is nilpotent modulo m, can be invertible. Therefore,
the set of endomorphisms a• of an indecomposable complex A• such that
all components a

n
are nilpotent modulo m form an ideal R of EndA• and

EndA•/R is a skew field. Hence R = rad(EndA•) and EndA• is local.

Now we want to show that any complex from C (A ) has an indecompos-
able direct summand. Consider an arbitrary complex A• and suppose that
A0 6= 0. For any idempotent endomorphism e• of A• at least one of the com-
plexes e(A•) or (1− e)(A•) has a non-zero component at the zero place. On
the set of all endomorphisms of A• we can introduce a partial ordering by
writing e• ≥ e

′
• if and only if e′• = e•e

′
•e• and both e0 and e

′
0

are non-zero.
Let e• ≥ e

′
• ≥ e

′′
• ≥ . . . be a chain of idempotent endomorphisms of A•.

As all endomorphism algebras EndA
l

are finitely generated S-modules, the
sequences e

l
, e

′
l
, e

′′
l
, · · · ∈ EndA

l
stabilize for all l, so this chain has a lower

bound (formed by the limit values of components). By Zorn’s lemma, there
is a minimal non-zero idempotent of A•, which defines an indecomposable
direct summand.

Again, since all EndA
l
are finitely generated, for every n there is a de-

composition A• = B
(n)

• ⊕

⊕

rn

i=1
B

in• where all B
in• are indecomposable and

B
(n)

l
= 0 for l ∈ I

n
. Moreover, one may suppose that r

n
≤ r

m
for m > n

and B
in• = B

im• for i ≤ r
n
. Evidently, it implies that A• =

⊕

r

i=1
B

i• where
r = sup

n
r
n

and B
i• = B

in• for i ≤ r
n
, which accomplishes the proof of the

Theorem 1.2 for C (A ) .
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Note now that the endomorphism ring of each complex B
i• in the cate-

gory H (A ) is a factor ring of its endomorphism ring in C (A ) . Hence it is
either local or zero; in the latter case the image of B

i• in H (A ) is a zero
object. Therefore, the claim is also valid for H (A ) .

Since the derived category D−(R -mod) is equivalent to H −(R -proj), we get
the following corollary.

Corollary 1.3. Let S be R be a locally finite S-category (e.g. a finite S-

algebra). Then the derived category D−(R -mod) is ω-local, in particular,

Krull–Schmidt.

2 Finite Dimensional Algebras

2.1 Semi-Continuity

In this section we suppose that S = k is an algebraically closed field and
A is a finite dimensional k-algebra with radical J. In this case one can de-
fine, following the pattern of [28], the number of parameters for objects of the
bounded derived category D b(A-mod). First of all, every object M in the cat-
egory A-mod has a projective cover , i.e. an epimorphism f : P → M , where
P is a projective module, such that Ker f ⊆ JP . Moreover, this projective
cover is unique up to an isomorphism. It implies that every right bounded
complex of A-modules is isomorphic in the homotopy category H −(A-mod)
to a minimal complex, i.e. such a complex of projective modules

P• : · · · → P
n+1

dn+1

−−−→ P
n

dn
−→ P

n−1

dn−1

−−−→ . . . ,

that Im d
n
⊆ JP

n−1 for all n.

Consider now the full subcategory H
(N)

0
= H

(N)

0
(A) of H (N)(A) con-

sisting of minimal complexes. Then again D b(A-mod) ' lim
−→

H
(N)

0
. Moreover,

two complexes from H
(N)

0
are isomorphic in D b(A-mod) if and only if they

are isomorphic as complexes. Using this approximation, we can prescribe a
vector rank to every object M• ∈ D b(A-mod). Namely, let {A1, A2, . . . , As

}

be a set of representatives of isomorphism classes of indecomposable projec-
tive A-modules. Every finitely generated projective A-module P uniquely
decomposes as P '

⊕

s

i=1
r
i
A

i
. We call the vector r(P ) = (r1, r2, . . . , rs

), the
rank of the projective module P and for every vector r = (r1, r2, . . . , rs

) set
rA =

⊕

s

i=1
r
i
A

i
. Given a finite complex P• of projective modules, we define

its vector rank as the function rk(P•) : Z→ Ns mapping n ∈ Z to r(P
i
). It is

a function with finite support. Let ∆ be the set of all functions Z→ Ns with
finite support. For every function r• ∈ ∆, let C(r•) = C(r•,A) be the set of
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all minimal complexes P• such that P
n

= r
n
A (we write r

n
for r•(n) ). This

set can be considered as an affine algebraic variety over k, namely, C(r•) is
isomorphic to the subvariety of the affine space H =

∏

n
HomA(P

n
,JP

n−1)
consisting of all sequences (f

n
) such that f

n
f

n+1 = 0 for all n. Set also
G(r•) =

∏

n
AutP

n
. It is an affine algebraic group acting on C(r•) and its

orbits are just isomorphism classes of minimal complexes of vector rank r•. It
is convenient to replace affine varieties by projective ones, using the obvious
fact that the sequences (f

n
) and (λf

n
), where λ ∈ k is a nonzero scalar, belong

to the same orbit. So we write H(r•) for the projective space P(H) and D(r•)
for the image in H(r•) of C(r•). Actually, we exclude the complexes with zero
differential, but such a complex is uniquely defined by its vector rank, so they
play a negligible role in classification problems.

We consider now algebraic families of A-complexes, i.e. flat families over
an algebraic variety X. Such a family is a complex F• = (F

n
, d

n
) of flat

coherent A ⊗ O
X

-modules. We always assume this complex bounded and
minimal ; the latter means that Im d

n
⊆ JF

n−1 for all n. We also assume that
X is connected; it implies that the vector rank rk(F•(x)) is constant, so we
can call it the vector rank of the family F and denote it by rk(F•) Here,
as usually, F(x) = F

x
/m

x
F

x
, where m

x
is the maximal ideal of the ring

O
X,x

. We call a family F• non-degenerate if, for every x ∈ X, at least one
of d

n
(x) : F

n
(x) → F

n−1(x) is non-zero. Having a family F• over X and a
regular map φ : Y → X, one gets the inverse image φ∗(F), which is a family of
A-complexes over the variety Y such that φ∗(F)(y) ' F(φ(y)). If F• is non-
degenerate, so is φ∗(F). Given an ideal I ⊆ J, we call a family F• an I-family

if Im d
n
⊆ IF

n−1 for all n. Then any inverse image φ∗(F) is an I-family as well.
Just as in [29], we construct some “almost versal” non-degenerate I-families.

For each vector r = (r1, r2, . . . , rs
) denote I(r, r′) = HomA(rA, I · r′A),

where I is an ideal contained in J. Fix a vector rank of bounded complexes
r• = (r

k
) ∈ ∆ and set H(r•, I) =

⊕

k
I(r

k
, r

k−1). Consider the projective
space P(r•, I) = P(H(r•, I)) and its closed subset D(r•, I) ⊆ P consisting of
all sequences (h

k
) such that h

k+1hk
= 0 for all k. Because of the universal

property of projective spaces [40, Theorem II.7.1], the embedding D(r•, I)→
P(r•, I) gives rise to a non-degenerate I-family V• = V•(r•, I):

V• : V
n

dn
−−−→ V

n−1

dn−1

−−−→ . . . −→ V
m
, (1)

where Vk
= OD(r•,I)(n − k) ⊗ r

k
A for all m ≤ k ≤ n. We call V•(r•, I)

the canonical I-family of A-complexes over D(r•, I). Moreover, regular maps
φ : X → D(r•, I) correspond to non-degenerate I-families F• with F

k
= 0 for

k > n or k < m and F
k

= L⊗(n−k)
⊗ r

k
A for some invertible sheaf L over

X. Namely, such a family can be obtained as φ∗(V•) for a uniquely defined
regular map φ. Moreover, the following result holds, which shows the “almost
versality” of the families V•(r•, I).
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Proposition 2.1. For every non-degenerate family of I-complexes F• of

vector rank r• over an algebraic variety X, there is a finite open covering

X =
⋃

j
U

j
such that the restriction of F• onto each U

j
is isomorphic to

φ∗
j
V•(r•, I) for a regular map φ

j
: U

j
→ D(r•, I).

Proof. For each x ∈ X there is an open neighbourhood U 3 x such that
all restrictions F

k
|
U

are isomorphic to O
U
⊗ r

k
A; so the restriction F•|U is

obtained from a regular map U → D(r•, I). Evidently it implies the assertion.

Note that the maps φ
j

are not canonical, so we cannot glue them into a
“global” map X → D(r•, I).

The group G = G(r•) =
∏

k
Aut(r

k
A) acts on H(r•, I): (g

k
) · (h

k
) =

(g
k−1hk

g
−1

k
). It induces the action of G(r•) on P(R•, I) and on D(r•, I). The

definitions immediately imply that V•(r•, I)(x) ' V•(r•, I)(x
′) (x, x′ ∈ D) if

and only if x and x
′ belong to the same orbit of G. Consider the sets

D
i
= D

i
(r•, I) = {x ∈ D | dimGx ≤ i } .

It is known that they are closed (it follows from the theorem on dimensions
of fibres, cf. [40, Exercise II.3.22] or [48, Ch. I, § 6,Theorem 7]). We set

par(r•, I,A) = max
i

{dim D
i
(r•, I)− i }

and call this integer the parameter number of I-complexes of vector rank r•.
Obviously, if I ⊆ I′, then par(r•, I,A) ≤ par(r•, I

′
,A). Especially, the number

par(r•,A) = par(r•,J,A) is the biggest one.
Proposition 2.1, together with the theorem on the dimensions of fibres

and the Chevalley theorem on the image of a regular map (cf. [40, Exercise
II.3.19] or [48, Ch. I, § 5,Theorem 6]), implies the following result.

Corollary 2.2. Let F• be an I-family of vector rank r• over a variety X. For

each x ∈ X set X
x

= {x′ ∈ X | F•(x
′) ' F•(x) } and denote

X
i
= { x ∈ X | dimX

x
≤ i } ,

par(F•) = max
i

{dimX
i
− i } .

Then all subsets Xx
and X

i
are constructible (i.e. finite unions of locally

closed sets) and par(F•) ≤ par(r•, I,A).

Note that the bases D(r•, I) of our almost versal families are projec-

tive, especially complete varieties. We shall exploit this property while study-
ing the behaviour of parameter numbers in families of algebras. Since de-
compositions of algebras in families into direct sums of projective modules
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can differ, we restrict our considerations to the complexes of free modules.
Namely, let a = r(A). For every sequence b = (b

n
, . . . , b

m
) of integers we set

ba = (b
n
a, . . . , b

m
a) and write par(b, I,A) instead of par(ba, I,A).

A (flat) family of algebras over an algebraic variety X is a sheaf A of
O

X
-algebras, which is coherent and flat (thus locally free) as a sheaf of O

X
-

modules. For such a family and every sequence b = (b
m
, b

m+1, . . . , bn) one can
define the function par(b,A, x) = par(b,A(x)). Our main result is the upper
semi-continuity of these functions.

Theorem 2.3. Let A be a flat family of finite dimensional algebras over

an algebraic variety X. For every vector b = (b
m
, b

m+1, . . . , bn) the function

par(b,A, x) is upper semi-continuous, i.e. all sets

X
j
= {x ∈ X | par(b,A, x) ≥ j }

are closed.

Proof. We may assume that X is irreducible. Let K be the field of rational
functions on X. We consider it as a constant sheaf on X. Set J = rad(A⊗OX

K) and J = J ∩ A. It is a sheaf of nilpotent ideals. Moreover, if ξ is the
generic point of X, the factor algebra A(ξ)/J (ξ) is semisimple. Hence there is
an open set U ⊆ X such that A(x)/J (x) is semisimple, thus J (x) = radA(x)
for every x ∈ U . Therefore, par(b,A, x) = par(b,J (x),A(x)) for x ∈ U ; so
X

j
= X

j
(J ) ∪X ′

j
, where

X
j
(J ) = { x ∈ X | par(b,J (x),A(x)) ≥ j }

and X ′ = X \U is a closed subset in X. Using noetherian induction, we may
suppose that X ′

j
is closed, so we only have to prove that X

j
(J ) is closed too.

Consider the locally free sheaf H =
⊕

n

k=m+1
Hom(b

k
A, b

k−1J ) and the
projective space bundle P(H) [40, Section II.7]. Every point h ∈ P(H) defines
a set of homomorphisms h

k
: b

k
A(x)→ b

k−1J (x) (up to a homothety), where
x is the image of h in X, and the points h such that h

k
h

k+1 = 0 form a closed
subset D(b,A) ⊆ P(H). We denote by π the restriction onto D(b,A) of the
projection P(H)→ X; it is a projective, hence closed map. Moreover, for every
point x ∈ X the fibre π−1(x) is isomorphic to D(b,A(x),J (x)). Consider also
the group variety G over X: G =

∏

n

k=m
GL

bk
(A). There is a natural action

of G on D(b,A) over X, and the sets D
i

= { z ∈ D(b,A) | dimGz ≤ i } are
closed in D(b,A). Therefore, the sets Z

i
= π(D

i
) are closed in X, as well as

Z
ij

= {x ∈ Z
i
| dim π

−1(x) ≥ i + j }. But X
j
(J ) =

⋃

i
Z

ij
, thus it is also a

closed set.

2.2 Derived Tame and Wild Algebras

We are going to define derived tame and derived wild algebras. To do it, we
consider families of complexes with non-commutative bases.
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Definition 2.4. 1. Let R be a k-algebra. A family of A-complexes based

on R is a complex of finitely generated projective A⊗Rop-modules P•. We
denote by C (N)(A,R) the category of all bounded families with P

n
= 0 for

n > N (again we do not prescribe the right bound). For such a family P• and
an R-module L we denote by P•(L) the complex (P

n
⊗R L, d

n
⊗ 1). If L is

finite dimensional, P•(L) ∈ C (N)(A) = C (N)(A, k).

Obviously, if the algebra R is affine, i.e. commutative, finitely generated
over k and without nilpotents, such families coincide in fact with families of
complexes over the algebraic variety Spec R. Especially, if R is also connected
(i.e. contains no nontrivial idempotents), the vector rank of such a family
rk(P•) is defined as rk(P• ⊗R S), where S is a simple R-module (no matter
which one).

2. We call a family P• strict if for every finite dimensional R-modules L, L′

(a) P•(L) ' P•(L
′) if and only if L ' L

′;

(b) P•(L) is indecomposable if and only if so is L.

3. We call A derived wild if it has a strict family of complexes over every
finitely generated k-algebra R.

The following useful fact is well known.

Proposition 2.5. An algebra A is derived wild if and only if it has a strict

family over one of the following algebras:

• free algebra k〈x, y〉 in two variables;

• polynomial algebra k[x, y] in two variables;

• power series algebra k[[x, y]] in two variables.

Definition 2.6. 1. A rational algebra is a k-algebra k[t, f(t)−1] for a non-
zero polynomial f(t). A rational family of A-complexes is a family over a
rational algebra R. Equivalently, a rational family is a family over an open
subvariety of the affine line.

2. An algebra A is called derived tame if there is a set of rational families of
bounded A-complexes P such that:

(a) for each r• ∈ ∆, the set P(r•) = {P• ∈ P | rk(P•) = r• } is finite.

(b) for every r• all indecomposable complexes from C(r•,A), except finitely
many of them (up to isomorphism), are isomorphic to a complex P•(L)
for some P• ∈ P and some finite dimensional L.

We call P a parameterizing set of A-complexes.
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These definitions do not formally coincide with other definitions of derived
tame and derived wild algebras, for instance, those proposed in [36, 37], but
all of them are evidently equivalent. It is obvious (and easy to prove, like in
[20]) that neither algebra can be both derived tame and derived wild. The
following result (“tame–wild dichotomy for derived categories”) has recently
been proved by V.Bekkert and the author [6].

Theorem 2.7. Every finite dimensional algebra over an algebraically closed

field is either derived tame or derived wild.

2.3 Sliced Boxes

The proof of Theorem 2.7 rests on the technique of representations of boxes
(“matrix problems”). We recall now the main related notions. A box is a
pair A = (A ,V ), where A is a category and V is an A -coalgebra, i.e. an
A -bimodule supplied with comultiplication µ : V → V ⊗A V and counit

ι : V → A , which are homomorphisms of A -bimodules and satisfy the usual
coalgebra conditions

(µ⊗ 1)µ = (1⊗ µ)µ, i
l
(ι⊗ 1)µ = i

r
(1⊗ ι)µ = Id,

where il : A ⊗A V ' V and i
r

: V ⊗A A ' V are the natural isomorphisms.
The kernel V = Ker ι is called the kernel of the box. A representation of such
a box in a category C is a functor M : A → C . Given another representation
N : A → C , a morphism f : M → N is defined as a homomorphism of A -
modules V ⊗A M → N , The composition gf of f : M → N and g : N → L

is defined as the composition

V ⊗A M
µ⊗1

−−−→ V ⊗A V ⊗A M
1⊗f

−−−→ V ⊗A N
g

−−−→ L,

while the identity morphism Id
M

of M is the composition

V ⊗A M
ι⊗1
−−−→ A ⊗A M

il
−−−→ M.

Thus we obtain the category of representations Rep(A,C ). If C = vec, the
category of finite dimensional vector spaces, we just write Rep(A). If f is a
morphism and γ ∈ V (a, b), we denote by f(γ) the morphism f(b)(γ ⊗ ) :
M(a) → N(a). A box A is called normal (or group-like) if there is a set of
elements ω = {ω

a
∈ V (a, a) | a ∈ Ob A } such that ι(ω

a
) = 1

a
and µ(ω

a
) =

ω
a
⊗ω

a
for every a ∈ ObA . In this case, if f is an isomorphism, all morphisms

f(ω
a
) are isomorphisms M(a) ' N(a). This set is called a section of A. For

a normal box, one defines the differentials ∂0 : A → V and ∂1 : V → V ⊗A V

setting

∂0(α) = αω
a
− ω

b
α for α ∈ A (a, b);

∂1(γ) = µ(γ)− γ ⊗ ω
a
− ω

b
⊗ γ for γ ∈ V (a, b).
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Usually we omit indices, writing ∂α and ∂γ.
Recall that a free category kΓ, where Γ is an oriented graph, has the

vertices of Γ as its objects and the paths from a to b (a, b being two vertices) as
a basis of the vector space kΓ(a, b).If Γ has no oriented cycles, such a category
is locally finite dimensional. A semi-free category is a category of fractions
kΓ[S−1], where S = { g

α
(α) |α ∈ L } and L is a subset of the set of loops in Γ

(called marked loops). The arrows of Γ are called the free (respectively, semi-

free) generators of the free (semi-free) category. A normal box A = (A ,V )
is called free (semi-free) if such is the category A , moreover, the kernel V =
Ker ι of the box is a free A -bimodule and ∂α = 0 for each marked loop α.
A set of free (respectively, semi-free) generators of such a box is a union
S = S0 ∪ S1, where S0 is a set of free (semi-free) generators of the category
A and S1 is a set of free generators of the A -bimodule V .

We call a category A trivial if it is a free category generated by a trivial
graph (i.e. one with no arrows); thus A (a, b) = 0 if a 6= b and A (a, a) = k. We
call A minimal, if it is a semi-free category with a set of semi-free generators
consisting of loops only, at most one loop at each vertex. Thus A (a, b) = 0
again if a 6= b, while A (a, a) is either k or a rational algebra. We call a normal
box A = (A ,V ) so-trivial if A is trivial, and so-minimal if A is minimal and
all its loops α are minimal too (i.e. with ∂α = 0).

A layered box [15] is a semi-free box A = (A ,V ) with a section ω, a set
of semi-free generators S = S0 ∪ S1 and a function ρ : S0 → N satisfying the
following conditions:

• A morphism φ from Rep(A) is an isomorphism if all maps φ(ω
a
) (a ∈

Ob A )) are isomorphisms.

• There is at most one marked loops at each vertex.

• For each α ∈ S0 the differential ∂α belongs to the A
α
-sub-bimodule of

V generated by S1, where A
α

is the semi-free subcategory of A with
the set of semi-free generators {β ∈ S0 | ρ(β) < ρ(α) }.

Obviously, we may suppose, without loss of generality, that ρ(α) = 0 for every
marked loop α. The set {ω,S, ρ } is called a layer of the box A.

In [21] (cf. also [15, 25]) the classification of representations of an ar-
bitrary finite dimensional algebra was reduced to representations of a free
layered box. To deal with derived categories we have to consider a wider class
of boxes. First, a factor-box of a box A = (A ,V ) modulo an ideal I ⊆ A is
defined as the box A/I = (A/I ,V/(IV + VI )) (with obvious comultipli-
cation and counit). Note that if A is normal, so is A/I .

Definition 2.8. A sliced box is a factor-box A/I , where A = (A ,V ) is a
free layered box such that the set of its objects V = Ob A is a disjoint union
V =

⋃

i∈Z
V

i
so that the following conditions hold:
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• A (a, a) = k for each object a ∈ A ;

• A (a, b) = 0 if a 6= b, a ∈ V
i
, b ∈ V

j
with j ≥ i;

• V (a, b) = 0 if a ∈ V
i
, b ∈ V

j
with i 6= j.

The partition V =
⋃

i
V

i
is called a slicing.

Certainly, in this definition we may assume that the elements of the ideal I

are linear combinations of paths of length at least 2. Otherwise we can just
eliminate one of the arrows from the underlying graph without changing the
factor A/I .

Note that for every representation M ∈ Rep(A), where A is a free (semi-
free, sliced) box with the set of objects V, one can consider its dimension

dim(M), which is a function V → N, namely dim(M)(a) = dimM(a).
We call such a representation finite dimensional if its support suppM =
{ a ∈ V |M(a) 6= 0 } is finite and denote by rep(A) the category of finite di-
mensional representations. Having these notions, one can easily reproduce the
definitions of families of representations, especially strict families, wild and
tame boxes; see [21, 25] for details. The following procedure, mostly copying
that of [21], allows to model derived categories by representations of sliced
boxes.

Let A be a finite dimensional algebra, J be its radical. As far as we
are interested in A-modules and complexes, we can replace A by a Morita
equivalent reduced algebra, thus suppose that A/J ' ks [31]. Let 1 =

∑

s

i=1
e

i
,

where e
i

are primitive orthogonal idempotents; set A
ji

= e
j
Ae

i
and J

ji
=

e
j
Je

i
; note that J

ji
= A

ji
if i 6= j. We denote by S the trivial category

with the set of objects { (i, n) |n ∈ N, i = 1, 2, . . . , s } and consider the S -
bimodule J such that

J
(

(i, n), (j,m)
)

=

{

0 if m 6= n− 1,

J∗
ji

if m = n− 1.

Let B = S [J ] be the tensor category of this bimodule; equivalently, it is the
free category having the same set of objects as S and the union of bases of
all J

(

(i, n), (j,m)
)

as a set of free generators. Denote by U the S -bimodule
such that

U
(

(i, n), (j,m)
)

=

{

0 if n 6= m,

A∗
ji

if n = m

and set ˜W = B ⊗S U ⊗S B . Dualizing the multiplication A
kj
⊗A

ji
→ A

ki
,

we get homomorphisms

λ
r

: B → B ⊗S
˜W , λ

l
: B → ˜W ⊗S B , µ̃ : ˜W → ˜W ⊗S

˜W .
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In particular, µ̃ defines on ˜W a structure of B -coalgebra. Moreover, the sub-
bimodule W 0 generated by Im(λ

r
−λ

l
) is a coideal in ˜W , i.e. µ̃(W 0) ⊆ W 0⊗B

˜W ⊕ ˜W ⊗B W 0. Therefore, W = ˜W/W 0 is also a B -coalgebra, so we get a box
B = (B ,W ). One easily checks that it is free and triangular.

Dualizing multiplication also gives a map

ν : J∗
ji
→

s
⊕

k=1

J∗
jk
⊗ J∗

ki
. (2)

Namely, if we choose bases {α } , { β } { γ } in the spaces, respectively, Jji
,

J
jk
, J

ki
, and dual bases {α∗

} , {β
∗
} , { γ

∗
} in their duals, then β∗

⊗γ
∗ occurs

in ν(α∗) with the same coefficient as α occurs in βγ. Note that the right-
hand space in (2) coincide with each B

(

(i, n), (j, n− 2)
)

. Let I be the ideal
in B generated by the images of ν in all these spaces and D = B/I =
(A ,V ), where A = B/I , V = W/(IW + WI ). If necessary, we write D(A)
to emphasize that this box has been constructed from a given algebra A.
Certainly, D is a sliced box, and the following result holds.

Theorem 2.9. The category of finite dimensional representations rep(D(A))
is equivalent to the category C b

min
(A) of bounded minimal projective A-

complexes.

Proof. Let A
i
= Ae

i
. They form a complete list of non-isomorphic in-

decomposable projective A-modules. Further, set J
i
= radA

i
= Je

i
. Then

HomA(A
i
, J

j
) ' J

ji
. A representation M ∈ rep(D) is given by vector spaces

M(i, n) and linear maps

M
ji
(n) : J∗

ji
= A

(

(i, n), (j, n− 1)
)

→ Hom
(

M(i, n),M(j, n − 1)
)

subject to the relations

s
∑

k=1

m
(

M
jk

(n)⊗M
ki

(n+ 1)
)

ν(α) = 0 (3)

for all i, j, k, n and all α ∈ Jji
, where m denotes the multiplication of maps

Hom
(

M(k, n),M(j, n − 1)
)

⊗ Hom
(

M(i, n + 1),M(k, n)
)

→ Hom
(

M(i, n + 1),M(j, n− 1)
)

.

For such a representation, set P
n

=
⊕

s

i=1
A

i
⊗M(i, n). Then

radP
n

=

n
⊕

i=1

J
i
⊗M(i, n)
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and

HomA(P
n
, radP

n−1) '
⊕

i,j

HomA

(

A
i
⊗M(i, n), J

j
⊗M(j, n − 1)

)

'

⊕

ij

Hom
(

M(i, n),HomA

(

A
i
, J

j
⊗M(j, n− 1)

))

'

⊕

ij

M(i, n)∗ ⊗ J
ji
⊗M(j, n− 1)

'

⊕

ij

Hom
(

J∗
ji
,Hom

(

M(i, n),M(j, n − 1)
))

.

Thus the set {M
ji
(n) | i, j = 1, 2, . . . , s } defines a homomorphism d

n
: P

n
→

P
n−1 and vice versa. Moreover, one easily verifies that the condition (3) is

equivalent to the relation d
n
d

n+1 = 0. Since every projective A-module can be
given in the form

⊕

s

i=1
A

i
⊗V

i
for some uniquely defined vector spaces V

i
, we

get a one-to-one correspondence between finite dimensional representations
of D and bounded minimal complexes of projective A-modules. In the same
way one also establishes one-to-one correspondence between morphisms of
representations and of the corresponding complexes, compatible with their
multiplication, which accomplishes the proof.

Corollary 2.10. An algebra A is derived tame (derived wild) if and only if

so is the box D(A).

2.4 Proof of Dichotomy

Now we are able to prove Theorem 2.7. Namely, according to Corollary 2.10,
it follows from the analogous result for sliced boxes.

Theorem 2.11. Every sliced box is either tame or wild.

Actually, just as in [21] (see also [15, 25]), we shall prove this theorem in the
following form.

Theorem 2.11a. Suppose that a sliced box A = (A ,V ) is not wild. For every

dimension d of its representations there is a functor Fd : A →M , where M

is a minimal category, such that every representation M : A → vec of A of

dimension dim(M) ≤ d is isomorphic to the inverse image F ∗
N = N ◦ F for

some functor N : M → vec. Moreover, F can be chosen strict, which means

that F ∗
N ' F

∗
N

′ implies N ' N
′ and F ∗

N is indecomposable if so is N .

Remark. We can consider the induced box A
F = (M ,M⊗A V⊗A M ). It is a

so-minimal box, and F ∗ defines a full and faithful functor rep(AF )→ rep(A).
Its image consists of all representations M : A → vec that factorize through
F .
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Proof. As we fix the dimension d, we may assume that the set of objects is
finite (namely, supp d). Hence the slicing V =

⋃

i
V

i
(see Definition 2.8) is

finite too: V =
⋃

m

i=1
V

i
and we use induction by m. If m = 1, A is free, and

our claim follows from [21, 15]. So we may suppose that the theorem is true
for smaller values of m, especially, it is true for the restriction A

′ = (A ′
,V ′)

of the box A onto the subset V′ =
⋃

m

i=2
V

i
. Thus there is a strict functor

F ′ : A ′
→M , where M is a minimal category, such that every representa-

tion of A
′ of dimension smaller than d is of the form F

′∗
N for N : M → vec.

Consider now the amalgamation B = A
⊔A ′

M and the box B = (B ,W ),
where W = B ⊗A V ⊗A B . The functor F ′ extends to a functor F : A → B

and induces a homomorphism of A-bimodules V → W ; so it defines a functor
F ∗ : rep(B)→ rep(A), which is full and faithful. Moreover, every representa-
tion of A of dimension smaller than d is isomorphic to F ∗

N for some N , and
all possible dimensions of such N are restricted by some vector b. Therefore,
it is enough to prove the claim of the theorem for the box B.

Note that the category B is generated by the loops from M and the
images of arrows from A (a, b) with b ∈ V1 (we call them new arrows). It
implies that all possible relations between these morphisms are of the form
∑

β
βg

β
(α) = 0, where α ∈ B (a, a) is a loop (necessarily minimal, i.e. with

∂α = 0), g
β

are some polynomials, and β runs through the set of new arrows
from a to b for some b ∈ V1. Consider all of these relations for a fixed b;
let them be

∑

β
βg

β,k
(α) = 0 (k = 1, . . . , r). Their coefficients form a ma-

trix
(

g
β,k

(α)
)

. Using linear transformations of the set {β } and of the set
of relations, we can make this matrix diagonal, i.e. make all relations being
βf

β
(α) = 0 for some polynomials f

β
. If one of f

β
is zero, the box B has a

sub-box

aα

β

b ,

with ∂α = ∂β = 0, which is wild; hence B and A are also wild. Otherwise,
let f(α) 6= 0 be a common multiple of all f

β
(α), Λ = {λ1, λ2, . . . , λr

} be the
set of roots of f(α). If N ∈ rep(B) is such that N(α) has no eigenvalues from
Λ, then f(N(α)) is invertible; thus N(β) = 0 for all β : a → b. So we can
apply the reduction of the loop α with respect to the set Λ and the dimension
d = b(a), as in [21, Propositions 3,4] or [25, Theorem 6.4]. It gives a new box
that has the same number of loops as B, but the loop corresponding to α is
“isolated,” i.e. there are no more arrows starting or ending at the same vertex.
In the same way we are able to isolate all loops, obtaining a semi-free layered
box C and a morphism G : B → C such that G∗ is full and faithful and all
representations of B of dimensions smaller than b are of the form G

∗
L. As

the theorem is true for semi-free boxes, it accomplishes the proof.

Remark. Applying reduction functors, like in the proof above, we can also
extend to sliced boxes (thus to derived categories) other results obtained
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before for free boxes. For instance, we mention the following theorem, quite
analogous to that of Crawley-Boevey [17].

Theorem 2.12. If an algebra A is derived tame, then, for any vector rank

r• ∈ ∆ = (r
n
|n ∈ Z), there is at most finite set of generic A-complexes of en-

dolength r•, i.e. such indecomposable minimal bounded complexes P• of projec-

tive A-modules, not all of which are finitely generated, that lengthE(P
n
) = r

n

for all n, where E = EndA(P•).

Its proof reproduces again that of [17], with obvious changes necessary to
include sliced boxes into consideration.

2.5 Deformations of Derived Tame Algebras

Combining the semi-continuity properties with tame–wild dichotomy, we can
prove the results on deformations of derived tame algebras, analogous to those
of [28, 35]. Note first the following easy observation.

Proposition 2.13. Let A be a finite dimensional algebra. For every vector

r = (r1, r2, . . . , rs
) set |r| =

∑

s

i=1
r
i
. For every vector rank r• ∈ ∆(A) set

|r•| =
∑

n
r

n
.

1. A is derived tame if and only if par(r•,A) ≤ |r•| for every r• ∈ ∆.

2. A is derived wild if and only if there is a vector rank r• such that

par(kr•,A) ≥ k
2 for every k ∈ N.

Proof. The necessity of these conditions follows from the definitions of derived
tameness and wildness. Certainly, they exclude each other. Since every algebra
is either derived tame or derived wild, the sufficiency follows.

This proposition together with Theorem 2.3 immediately implies the following
result.

Corollary 2.14. For a family of algebras A over X denote

Xtame = { x ∈ X | A(x) is derived tame } ,

Xwild = { x ∈ X | A(x) is derived wild } .

Then Xtame is a countable intersection of open subsets and Xwild is a countable

union of closed subsets.

Proof. By Theorem 2.3 the set Z(r•) = {x ∈ X | par(r•,A) ≤ |r•| } is open.
But Xtame =

⋂

r
Z(r) and hence Xwild =

⋃

r
(X \ Z(r)).
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The following conjecture seems very plausible, though even its analogue for
usual tame algebras has not yet been proved. (Only for representation finite

algebras the corresponding result was proved in [33].)

Conjecture 2.15. For any (flat) family of algebras over an algebraic variety
X the set Xtame is open.

Recall that an algebra A is said to be a (flat) degeneration of an algebra B,
and B is said to be a (flat) deformation of A, if there is a (flat) family of
algebras A over an algebraic variety X and a point p ∈ X such that A(x) ' B
for all x 6= p, while A(p) ' A. One easily verifies that we can always assume
X to be a non-singular curve. Corollary 2.14 obviously implies

Corollary 2.16. Suppose that an algebra A is a (flat) degeneration of an

algebra B. If B is derived wild, so is A. If A is derived tame, so is B.

If we consider non-flat families, the situation can completely change. The
reason is that the dimension is no more constant in these families. That is
why it can happen that such a “degeneration” of a derived wild algebra may
become derived tame, as the following example due to Brüstle [10] shows.

Example 2.17. There is a (non-flat) family of algebras A over an affine
line A1 such that all of them except A(0) are isomorphic to the derived wild
algebra B given by the quiver with relations

•

•
α

•
β1

•

γ1

γ2

•
β2

β1α = 0,

•

while A(0) is isomorphic to the derived tame algebra A given by the quiver
with relations

•

•
α

•

ξ1

β1

•

γ1

γ2

•
β2

ξ2

β1α = γ1β1 = γ2β2 = 0.

•

(4)

Namely, one has to define A(λ) as the factor algebra of the path algebra of
the quiver as in (4), but with the relations β1α = 0, γ1β1 = λξ1, γ2β2 = λξ2.
Note that dimA = 16 and dimB = 15, which shows that this family is not
flat.

Actually, in such a situation the following result always holds.
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Proposition 2.18. Let A be a family (not necessarily flat) of algebras over

a non-singular curve X such that A(x) ' B for all x 6= p, where p is a

fixed point, while A(p) ' A. Then there is a flat family B over X such that

B(x) ' B for all x 6= p and B(p) ' A/I for some ideal I.

Proof. Note that the restriction ofA onto U = X \ { p } is flat, since dimA(x)
is constant there. Let n = dimB, Γ be the quiver of the algebra B and G = kΓ
be the path algebra of Γ. Consider the Grassmannian Gr(n,G), i.e. the va-
riety of subspaces of codimension n of G. The ideals form a closed subset
Alg = Alg(n,G) ⊂ Gr(n,G). The restriction of the canonical vector bundle
V over the Grassmannian onto Alg is a sheaf of ideals in G = G⊗OAlg, and
the factor F = G/V is a universal family of factor algebras of G of dimen-
sion n. Therefore, there is a morphism φ : U → Alg such that the restriction
of A onto U is isomorphic to φ∗(F). Since Alg is projective and X is non-
singular, φ can be continued to a morphism ψ : X → Alg. Let B = ψ∗(F);
it is a flat family of algebras over X. Moreover, B coincides with A outside
p. Since both of them are coherent sheaves on a non-singular curve and B is
locally free, it means that B ' A/T , where T is the torsion part of A, and
B(p) ' A(p)/T (p).

Corollary 2.19. If a degeneration of a derived wild algebra is derived tame,

the latter has a derived wild factor algebra.

In Brüstle’s example 2.17, to obtain a derived wild factor algebra of A, one
has to add the relation ξ1α = 0, which obviously holds in B.

By the way, as a factor algebra of a tame algebra is obviously tame (which
is no more true for derived tame algebras!), we get the following corollary (cf.
also [18, 29]).

Corollary 2.20. Any deformation (not necessarily flat) of a tame algebra is

tame. Any degeneration of a wild algebra is wild.

3 Nodal Rings

3.1 Backström Rings

We consider a class of rings, which generalizes in a certain way local rings of
ordinary multiple points of algebraic curves. Following the terminology used
in the representations theory of orders, we call them Backström rings. In this
section we suppose all rings being noetherian and semi-perfect in the sense
of [3]; the latter means that all idempotents can be lifted modulo radical, or,
equivalently, that every finitely generated module M has a projective cover,
i.e. such an epimorphism f : P → M , where P is projective and Ker f ⊆
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radP . Hence, just as for finite dimensional algebras, the derived category
D−(A-mod) is equivalent to the homotopy category of right bounded minimal

complexes, i.e. such complexes of finitely generated projective modules

· · · → P
n+1

dn+1

−−−→ P
n

dn
−−−→ P

n−1 → . . .

that Im d
n
⊆ radP

n−1 for all n.

Definition 3.1. A ring A (noetherian and semi-perfect) is called a Backström

ring if there is a hereditary ring H ⊇ A (also semi-perfect and noetherian)
and a (two-sided, proper) H-ideal JA such that both R = H/J and S = A/J
are semi-simple.

For Backström rings there is a convenient way to the calculations in de-
rived categories. Recall that for a hereditary ring H every object C• from
D−(H-mod) is isomorphic to the direct sum of its homologies. Especially,
any indecomposable object from D−(H-mod) is isomorphic to a shift N [n]
for some H-module N , or, the same, to a “short” complex 0→ P ′ α

−→ P → 0,
where P and P ′ are projective modules and α is a monomorphism with
Imα ⊆ radP (maybe P ′ = 0). Thus it is natural to study the cate-
gory D−(A-mod) using this information about D−(H-mod) and the functor
T : D−(A-mod) → D−(H-mod) mapping C• to H ⊗A C•. (Of course, we
mean here the left derived functor of ⊗, but when we consider complexes of
projective modules, it restricts indeed to the usual tensor product.)

Consider a new category T = T (A) (the category of triples) defined as
follows:

• Objects of T are triples (A•, B•, ι), where

– A• ∈ D−(H-mod);

– B• ∈ D−(S-mod);

– ι is a morphism B• → R ⊗H A• from D−(S-mod) such that the
induced morphism ιR : R⊗S B• → R⊗H A• is an isomorphism in
D−(R-mod).

• A morphism from a triple (A•, B•, ι) to a triple (A′
•, B

′
•, ι

′) is a pair
(Φ, φ), where

– Φ : A• → A
′
• is a morphism from D−(H-mod);

– φ : B• → B
′
• is a morphism from D−(S-mod);

– the diagram

B•
ι

φ

R⊗H A•

1⊗Φ

B
′
•

ι
′

R⊗H A
′
•

(5)

commutes in D−(S-mod).
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One can define a functor F : D−(A-mod)→ T (A) setting

F(C•) = (H⊗A C•,S⊗A C•, ι) ,

where ι : S⊗A C• → R⊗H (H⊗A C•) ' R⊗A C• is induced by the embed-
ding S→ R. The values of F on morphisms are defined in an obvious way.

Theorem 3.2. The functor F is a full representation equivalence, i.e. it is

• dense, i.e. every object from T is isomorphic to an object of the form

F(C•);

• full, i.e. each morphism F(C•) → F(C ′
•) is of the form F(γ) for some

γ : C• → C
′
•;

• conservative, i.e. F(γ) is an isomorphism if and only if so is γ;

As a consequence, F maps non-isomorphic objects to non-isomorphic and

indecomposable to indecomposable.

Note that in general F is not faithful : it is possible that F(γ) = 0 though
γ 6= 0 (cf. Example 3.10.3 below).

Proof (sketched). Consider any triple T = (A•, B•, ι). We may suppose that
A• is a minimal complex from C−(A-proj), while B• is a complex with zero
differential (since S is semi-simple), and the morphism ι is a usual morphism
of complexes. Note that R⊗H A• is also a complex with zero differential. We
have an exact sequence of complexes:

0 −→ JA• −→ A• −→ R⊗H A• −→ 0.

Together with the morphism ι : B• → R⊗HA• it gives rise to a commutative
diagram in the category of complexes C−(A-mod)

0 −−−→ JA• −−−→ C• −−−→ B• −−−→ 0
∥

∥

∥

α





y





y

ι

0 −−−→ JA• −−−→ A• −−−→ R⊗H A• −−−→ 0,

where C• is the preimage in A• of Im ι. The lower row is also an exact sequence
of complexes and α is an embedding. Moreover, since ιR is an isomorphism,
JA• = JC•. It implies that C• consists of projective A-modules and H ⊗A

C• ' A•, wherefrom T ' FC•.
Let now (Φ, φ) : FC• → FC ′

•. We suppose again that both C• and C
′
•

are minimal, while Φ : H⊗A C• → H⊗A C
′
• and φ : S⊗A C• → S⊗A C

′
• are

morphisms of complexes. Then the diagram (5) is commutative in the category
of complexes, so Φ(C•) ⊆ C

′
• and Φ induces a morphism γ : C• → C

′
•. It is
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evident from the construction that F(γ) = (Φ, φ). Moreover, if (Φ, φ) is an
isomorphism, so are Φ and φ (since our complexes are minimal). Therefore,
Φ(C•) = C

′
•, i.e. Im γ = C

′
•. But ker γ = ker Φ ∩ C• = 0, thus γ is an

isomorphism too.

Evident examples of Backström rings are completions of local rings of ordinary
multiple points of algebraic curves. If A is such a ring, H is its normalization

(i.e. integral closure in the full ring of fractions) and J is the radical of A (or,
the same, of H). If the field k is algebraically closed, A is actually isomorphic
to a bouquet of power series rings k[[t]], i.e. to the subring in k[[t]]m, where m
is the multiplicity of the singularity, consisting of all sequences (f1, f2, . . . , fm

)
such that all f

i
(t) have the same constant term. Backström rings also include

important classes of finite dimensional algebras, such as gentle, skew-gentle

and others (cf. [13]). Certainly, most of Backström rings are actually wild
(hence derived wild). Nevertheless, some of them are derived tame and their
derived categories behave very well. An important class of such rings, called
nodal rings, will be considered in the next subsection.

3.2 Nodal Rings: Strings and Bands

Definition 3.3. A Backström ring A is called a nodal ring if it is pure

noetherian, i.e. has no minimal ideals, while the hereditary ring H and the
ideal J from Definition 3.1 satisfy the following conditions:

1. J = radA = radH.

2. length
A

(H⊗A U) ≤ 2 for every simple left A-module U and
lengthA(V ⊗A H) ≤ 2 for every simple right A-module V .

Note that condition 2 must be imposed both on left and on right modules.

In this situation the hereditary ring H is also pure noetherian. It is known (cf.
e.g. [9]) that such a hereditary ring is Morita equivalent to a direct product of
rings H(D, n), where D is a discrete valuation ring (maybe non-commutative)
and H(D, n) is the subring of Mat(n,D) consisting of all matrices (a

ij
) with

non-invertible entries a
ij

for i < j. Especially, H and A are semi-prime (i.e.
without nilpotent ideals). For the sake of simplicity we shall only consider the
split case, when the factor H/J is a finite dimensional algebra over a field k

and A/J is its subalgebra.

Remark. In [23] the author showed that if A is pure noetherian, but not a
nodal ring, then the category of A-modules of finite length is wild. All the
more so are the categories A-mod and D b(A-mod).
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Example 3.4. 1. The first example of a nodal ring is the completion of the
local ring of a simple node (or a simple double point) of an algebraic curve
over a field k. It is isomorphic to A = k[[x, y]]/(xy) and can be embedded
into H = k[[x1]]×k[[x2]] as the subring of pairs (f, g) such that f(0) = g(0): x
maps to (x1, 0) and y to (0, x2). Evidently this embedding satisfies conditions
of Definition 3.3.

2. The dihedral algebra A = k〈〈 x, y 〉〉/(x2
, y

2) is another example of a nodal
ring. In this case H = H(k[[t]], 2) and the embedding A→ H is given by the
rule

x 7→

(

0 t

0 0

)

, y 7→

(

0 0
1 0

)

.

3. The “Gelfand problem,” arising from the study of Harish-Chandra mod-
ules over the Lie group SL (2,R), is that of classification of diagrams with
relations

2
x+

1
x− y−

3
y+

x+x− = y+y−.

If we consider the case when x+x− is nilpotent (the nontrivial part of the
problem), such diagrams are just modules over the ring A, which is the sub-
ring of Mat(3, k[[t]]) consisting of all matrices (a

ij
) with a12(0) = a13(0) =

a23(0) = a32(0) = 0. The arrows of the diagram correspond to the following
matrices:

x+ 7→ te12, x− 7→ e21, y+ 7→ te13, y− 7→ e31,

where eij
are the matrix units. It is also a nodal ring with H being the sub-

ring of Mat(3, k[[t]]) consisting of all matrices (a
ij
) with a12(0) = a13(0) = 0

(it is Morita equivalent to H(k[[t]], 2) ). More general cases, arising in repre-
sentation theory of Lie groups SO (1, n), were considered in [41] (cf. also [11,
Section 7], where the corresponding diagrams are treated as nodal rings).

4. The classification of quadratic functors, which play an important role in
algebraic topology (cf. [5]), reduces to the study of modules over the ring A,
which is the subring of Z2

2
×Mat(2,Z2) consisting of all triples

(

a, b,

(

c1 2c2
c3 c4

))

with a ≡ c1 mod 2 and b ≡ c4 mod 2,

where Z2 is the ring of 2-adic integers [24]. It is again a (split) nodal ring:
one can take for H the ring of all triples as above, but without congruence
conditions; then H = Z2

2
×H(Z2, 2).

Certainly, we shall apply Theorem 3.2 to study the derived categories of
modules over nodal rings. Moreover, in this case the resulting problem belongs
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to a well-known type, considered in [7, 8, 16] (for its generalization to the
non-split case, see [19]). We denote by U1, U2, . . . , Us

indecomposable non-
isomorphic projective (left) modules over A, by V1, V2, . . . , Vr

those over H
and consider the decompositions of H⊗AUi

into direct sums of V
j
. Condition

2 from Definition 3.3 implies that there are three possibilities:

1. H ⊗A U
i
' V

j
for some j and V

j
does not occur as a direct summand

in H⊗A U
k

for k 6= i;

2. H ⊗A U
i
' V

j
⊕ V

j
′ (j 6= j

′) and neither V
j

nor V
j
′ occur in H ⊗A U

k

for k 6= i;

3. There are exactly two indices i 6= i
′ such that H⊗AUi

' H⊗AUi
′ ' V

j

and V
j

does not occur in H⊗A U
k

for k /∈ { i, i′ }.

We denote by H
j

the indecomposable projective H-module such that
H

j
/JH

j
' V

j
. Since H is a semi-perfect hereditary order, any indecomposable

complex from D−(H-mod) is isomorphic either to 0→ H
k

φ

−→ H
j
→ 0 or to

0 → H
j
→ 0 (it follows, for instance, from [22]). Moreover, the former com-

plex is completely defined by either j or k and the length l = length
H

(Cokφ).
We shall denote it both by C(j,−l, n) and by C(k, l, n+ 1), while the latter
complex will be denoted by C(j,∞, n), where n is the number of the place of
H

j
in the complex (so the number of the place of H

k
is n+ 1). We denote by

˜Z the set (Z \ { 0 }) ∪ {∞} and consider the ordering ≤ on ˜Z, which coin-
cides with the usual ordering separately on positive integers and on negative
integers, but l <∞ < −l for any positive l. Note that for each j the submod-
ules of H

j
form a chain with respect to inclusion. It immediately implies the

following result.

Lemma 3.5. There is a homomorphism C(j, l, n) → C(j, l′, n), which is an

isomorphism on the n-th components, if and only if l ≤ l
′ in ˜Z. Otherwise the

n-th component of any homomorphism C(j, l, n) → C(j, l′, n) is zero modulo

J.

We transfer the ordering from ˜Z to the set E
j,n

=
{

C(j, l, n)
∣

∣ l ∈ ˜Z
}

, so the
latter becomes a chain with respect to this ordering. We also consider one
element sets F

j,n
= { (j, n) } and denote

F
∗
j,n

= { (i, j, n) |V
j

is a direct summand of H⊗A U
i
} .

If j is fixed, there can be at most two such values of i. It happens when case
3 from page 103 occurs: H⊗A U

i
' H⊗A U

i
′ ' V

j
. Then we write (j, n) ∼

(j, n). We also write C(j,−l, n) ∼ C(k, l, n + 1) if these symbols denote the

same complex 0 → H
k

φ

−→ H
j
→ 0, and (j, n) ∼ (j ′, n) (j 6= j

′) if case 2
from page 103 occurs: H ⊗A U

i
' V

j
⊕ V

j
′ (if j is fixed, there can be only



104. Y.A. Drozd

one j ′ with this property). Thus a triple (A•, B•, ι) from the category T (A) is
given by homomorphisms φijn

jln
: d

i,j,n
U

i
→ r

j,l,n
V

j
, where C(j, l, n) ∈ E

j,n
and

(i, j, n) ∈ F
∗
j,n

. Here the left U
i

comes from B
n

and the right V
j

comes from
the direct summands r

j,l,n
C(j, l, n) of A• after tensoring by R. Note that if

C(j,−l, n) ∼ C(k, l, n+1), we have r
j,−l,n

= r
k,l,n+1, and if (j, n) ' (j ′, n), we

have d
i,j,n

= d
i,j

′
,n

for the unique possible value of i. We present φijn

jln
by its

matrix M ijn

jln
∈ Mat(r

j,l,n
× d

i,j,n
, k). Then Lemma 3.5 implies the following

Proposition 3.6. Two sets of matrices
{

M
ijn

jln

}

and
{

N
ijn

jln

}

describe iso-

morphic triples if and only if one of them can be transformed to the other one

by a sequence of the following “elementary transformations”:

1. For any given values of i, n, simultaneously M
ijn

jln
7→ M

ijn

jln
S for all j, l

such that (i, j, n) ∈ F
∗
j,n

, where S is an invertible matrix of appropriate

size.

2. For any given values of j, l, n, simultaneously M
ijn

jln
7→ S

′
M

ijn

jln
for all

(i, j, n) ∈ F
∗
j,n

and M
i,k,n−sgn l

k,−l,n−sgn l
7→ S

′
M

i,k,n−sgn l

k,−l,n−sgn l
for all (i, k, n− sgn l) ∈

F
∗
k,n−sgn l

, where S
′ is an invertible matrix of appropriate size and

C(j, l, n) ∼ C(k,−l, n−sgn l). If l =∞, it just meansM
ijn

j∞n
7→ S

′
M

ijn

j∞n
.

3. For any given values of j, l′ < l, n, simultaneously M
ijn

jln
7→ M

ijn

jln
+

RM
ijn

jl
′
n

for all (i, j, n) ∈ F
∗
j,n

, where R is an arbitrary matrix of ap-

propriate size. (Note that, unlike the preceding transformation, this
one does not touch the matrices M

i,k,n−sgn l

k,−l,n−sgn l
such that C(j, l, n) ∼

C(k,−l, n− sgn l).)

This sequence can be infinite, but must contain finitely many transformations

for every fixed values of j and n.

Therefore, we obtain representations of the bunch of chains {E
j,n
,F

j,n
} con-

sidered in [7, 8],2 so we can deduce from these papers a description of inde-
composables in D−(A-mod) (for infinite words, which correspond to infinite
strings, see [12]). We arrange it in terms of strings and bands often used in
representation theory.

Definition 3.7. 1. We define the alphabet X as the set
⋃

j,n
(E

j,n
∪F

j,n
). We

define symmetric relations ∼ and − on X by the following exhaustive rules:

(a) C(j, l, n)− (j, n) for all l ∈ Z;

(b) C(j,−l, n) ∼ C(k, l, n+1) if these both symbols correspond to the same

complex 0→ H
k

φ

−→ H
j
→ 0;

2Note that in [7, 8] they are called “bunches of semichained sets,” but we prefer to say
“bunches of chains,” as in [29, 11].
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(c) (j, n) ∼ (j ′, n) (j ′ 6= j) if V
j
⊕ V

j
′ ' H⊗A U

i
for some i;

(d) (j, n) ∼ (j, n) if V
j
' H⊗A U

i
' H⊗A U

i
′ for some i′ 6= i.

2. We define an X-word as a sequence w = x1r1x2r2x3 . . . rm−1xm
, where

x
k
∈ X, r

k
∈ {−,∼} such that

(a) xk
r
k
x

k+1 in X for 1 ≤ k < m;

(b) r
k
6= r

k+1 for 1 ≤ k < m− 1.

We call x1 and x
m

the ends of the word w.

3. We call an X-word w full if

(a) r1 = r
m−1 = −

(b) x1 6∼ y for each y 6= x1;

(c) x
m
6∼ z for each z 6= x

m
.

Condition (a) reflects the fact that ιR must be an isomorphism, while condi-
tions (b,c) come from generalities on bunches of chains [8, 11].

4. A word w is called symmetric if w = w∗, where w∗ = x
m
r
m−1xm−1 . . . r1x1

(the inverse word), and quasi-symmetric if there is a shorter word v such that
w = v ∼ v∗ ∼ · · · ∼ v

∗
∼ v.

5. We call the end x1 (x
m

) of a word w special if x1 ∼ x1 and r1 = −
(respectively, x

m
∼ x

m
and r

m−1 = −). We call a word w

(a) usual if it has no special ends;

(b) special if it has exactly one special end;

(c) bispecial if it has two special ends.

Note that a special word is never symmetric, a quasi-symmetric word is always
bispecial, and a bispecial word is always full.

6. We define a cycle as a word w such that r1 = r
m−1 =∼ and x

m
−x1. Such a

cycle is called non-periodic if it cannot be presented in the form v−v−· · ·−v

for a shorter cycle v. For a cycle w we set r
m

= −, x
qm+k

= x
k

and r
qm+k

= r
k

for any q, k ∈ Z.

7. A k-th shift of a cycle w, where k is an even integer, is the cycle w[k] =
x

k+1rk+1xk+2 . . . rk−1xk
. A cycle w is called symmetric if w[k] = w

∗ for some
k.

8. We also consider infinite words of the sorts w = x1r1x2r2 . . . (with one
end) and w = . . . x0r0x1r1x2r2 . . . (with no ends) with the following restric-
tions:
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(a) every pair (j, n) occurs in this sequence only finitely many times;

(b) there is an n0 such that no pair (j, n) with n < n0 occurs.

We extend to such infinite words all above notions in the obvious manner.

Definition 3.8 (String and band data). 1. String data are defined as
follows:

(a) a usual string datum is a full usual non-symmetric X-word w;

(b) a special string datum is a pair (w, δ), where w is a full special word and
δ ∈ { 0, 1 };

(c) a bispecial string datum is a quadruple (w,m, δ1, δ2), where w is a bis-
pecial word that is neither symmetric nor quasi-symmetric, m ∈ N and
δ1, δ2 ∈ { 0, 1 }.

2. A band datum is a triple (w,m, λ), where w is a non-periodic cycle, m ∈ N

and λ ∈ k∗; if w is symmetric, we also suppose that λ 6= 1.

The results of [7, 8] (and [11] for infinite words) imply

Theorem 3.9. Every string or band datum d defines an indecomposable ob-

ject C•(d) from D−(A-mod), so that

1. Every indecomposable object from D−(A-mod) is isomorphic to C•(d)
for some d.

2. The only isomorphisms between these complexes are the following:

(a) C(w) ' C(w∗) and C(w, δ) ' C(w∗
, δ);

(b) C(w,m, δ1, δ2) ' C(w∗
, m, δ2, δ1);

(c) C(w,m, λ) ' C(w[k]
, m, λ) ' C(w∗[k]

, m, 1/λ) if k ≡ 0 mod 4;

(d) C(w∗
, m, λ) ' C(w[k]

, m, 1/λ) ' C(w∗[k]
, m, λ) if k ≡ 2 mod 4.

3. Every object from D−(A-mod) uniquely decomposes into a direct sum

of indecomposable objects.

The construction of complexes C•(d) is rather complicated, especially in the
case, when there are pairs (j, n) with (j, n) ∼ (j, n) (e.g. special ends are in-
volved). So we only show several examples arising from simple node, dihedral
algebra and Gelfand problem.
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3.3 Examples

3.3.1 Simple Node

In this case there is only one indecomposable projective A-module (A
itself) and two indecomposable projective H-modules H1, H2 correspond-
ing to the first and the second direct factors of the ring H. We have
H⊗A A ' H ' H1 ⊕H2. So the ∼-relation is given by:

1. (1, n) ∼ (2, n);

2. C(j, l, n) ∼ C(j,−l, n− sgn l) for any l ∈ Z \ { 0 }.

Therefore, there are no special ends at all. Moreover, any end of a full string
must be of the form C(j,∞, n). Note that the homomorphism in the complex
corresponding to C(j,−l, n) and C(j, l, n + 1) (l ∈ N) is just multiplication
by xl

j
. Consider several examples of strings and bands.

Example 3.10. 1. Let w be the cycle

C(2, 1, 1) ∼ C(2,−1, 0)− (2, 0) ∼ (1, 0)− C(1,−2, 0) ∼ C(1, 2, 1)− (1, 1)

∼ (2, 1)− C(2, 4, 1) ∼ C(2,−4, 0)− (2, 0) ∼ (1, 0)− C(1,−1, 0)

∼ C(1, 1, 1)− (1, 1) ∼ (2, 1)− C(2,−3, 1) ∼ C(2, 3, 2)− (2, 2)

∼ (1, 2)− C(1, 2, 2) ∼ C(1,−2, 1)− (1, 1) ∼ (2, 1)

Then the band complex C•(w, 1, λ) is obtained from the complex of H-
modules

H2

x2

H2

H1

x
2

1

H1

H2

x
4

2

H2

H1

x1

H1

H2

x
3

2

H2

H1

x
2

1

H1

λ

by gluing along the dashed lines (they present the ∼ relations (1, n) ∼ (2, n)).
All gluings are trivial, except the last one marked with ‘λ’; the latter must
be twisted by λ. It gives the A-complex

A
y

A

A

λx
2

y
3

A

x
2

y
4

A

A
x

(6)
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Here each column presents direct summands of a non-zero component C
n

(in
our case n = 2, 1, 0) and the arrows show the non-zero components of the
differential. According to the embedding A→ H, we have to replace x1 by x
and x2 by y. Gathering all data, we can rewrite this complex as

A

 

λx
2

0

y
3

!

−−−−→ A⊕A⊕A

 

y 0

x
2

y
4

0 x

!

−−−−−→ A⊕A ,

though the form (6) seems more expressive, so we use it further. If m > 1,
one only has to replace A by mA, each element a ∈ A by aE, where E is
the identity matrix, and λa by aJ

m
(λ), where J

m
(λ) is the Jordan m×m cell

with eigenvalue λ. So we obtain the complex

mA
yE

mA

mA

x
2
Jm(λ)

y
3
E

mA

x
2
E

y
4
E

mA

mA
xE

or, the same,

mA

 

x
2
Jm(λ)

0

y
3
E

!

−−−−−−−→ mA⊕mA⊕mA

 

yE 0

x
2
E y

4
E

0 xE

!

−−−−−−−→ mA⊕mA .

2. Let w be the word

C(1,∞, 1)− (1, 1) ∼ (2, 1)− C(2, 2, 1) ∼ C(2,−2, 0)− (2, 0)

∼ (1, 0)− C(1,−3, 0) ∼ C(1, 3, 1)− (1, 1) ∼ (2, 1)− C(2,−1, 1)

∼ C(2, 1, 2)− (2, 2) ∼ (1, 2)− C(1, 1, 2) ∼ C(1,−1, 1)− (1, 1)

∼ (2, 1)− C(2, 2, 1) ∼ C(2,−2, 0)− (2, 0) ∼ (1, 0)− C(1,∞, 0) .

Then the string complex C•(w) is

A
y
2

A

A
y

x

A
x
3

A
y
2

A

Note that for string complexes (which are always usual in this case) there are
no multiplicities m and all gluings are trivial.
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3. Set a = x + y. Then the factor A/aA is represented by the complex
A

a

−→ A, which is the band complex C•(w, 1, 1), where

w = C(1, 1, 1) ∼ C(1,−1, 0)− (1, 0) ∼ (2, 0)− C(2,−1, 0)

∼ C(2, 1, 1)− (2, 1) ∼ (1, 1).

Consider the morphism of this complex to A[1] given on the 1-component by
multiplication A

x

−→ A. It is non-zero in D−(A-mod) (presenting a non-zero
element from Ext1(A/aA,A) ), but the corresponding morphism of triples is
(Φ, 0), where Φ arises from the morphism of the complex H

a

−→ H to H[1]
given by multiplication with x1. But Φ is homotopic to 0: x1 = e1a, where
e1 = (1, 0) ∈ H, thus (Φ, 0) = 0 in the category of triples. So the functor F
from Theorem 3.2 is not faithful in this case.

4. The string complex C•(l, 0), where w is the word

C(1,∞, 0)− (1, 0) ∼ (2, 0)− C(2,−1, 0) ∼ C(2, 1, 1)− (2, 1)

∼ (1, 1)− C(1,−2, 1) ∼ C(1, 1, 2)− (1, 2) ∼ (2, 2)− C(2,−1, 2)

∼ C(2, 1, 3)− (2, 3) ∼ (1, 3)− C(1,−2, 3) ∼ C(1, 2, 4)− . . . ,

is

. . . A
x
2

−→ A
y

−→ A
x
2

−→ A
y

−→ A −→ 0.

Its homologies are not left bounded, so it does not belong to Db(A-mod).

3.3.2 Dihedral Algebra

This case is very similar to the preceding one. Again there is only one indecom-
posable projective A-module (A itself) and two indecomposable projective
H-modules H1, H2, corresponding to the first and the second columns of ma-
trices from the ring H, and we have H ⊗A A ' H ' H1 ⊕ H2. The main
difference is that now the unique maximal submodule of H

j
is isomorphic to

H
k
, where k 6= j. So the ∼-relation is given by:

1. (1, n) ∼ (2, n);

2. C(j, l, n) ∼ C(j,−l, n − sgn l) if l ∈ Z \ { 0 } is even, and C(j, l, n) ∼
C(j ′,−l, n− sgn l), where j ′ 6= j, if l ∈ Z \ { 0 } is odd.

Again there are no special ends. The embeddings Hk
→ H

j
are given by right

multiplications with the following elements from H:

H1 → H1 − by t
r

e11 (colength 2r),

H1 → H2 − by t
r

e12 (colength 2r − 1),

H2 → H1 − by t
r

e21 (colength 2r + 1),

H2 → H2 − by t
r

e22 (colength 2r).
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When gluing H-complexes into A-complexes we have to replace them respec-
tively

tre11 − by (xy)r
, t

r
e22 − by (yx)r

,

tre12 − by (xy)r−1
x, t

r
e21 − by (yx)r

y.

The gluings are quite analogous to those for simple node, so we only present
the results, without further comments.

Example 3.11. 1. Consider the band datum (w, 1, λ), where

w = C(1,−2, 0) ∼ C(1, 2, 1)− (1, 1) ∼ (2, 1)− C(2,−5, 1)

∼ C(1, 5, 2)− (1, 2) ∼ (2, 2)− C(2, 4, 2) ∼ C(2,−4, 1)− (2, 1)

∼ (1, 1)− C(1, 3, 1) ∼ C(2,−3, 0)− (2, 0) ∼ (1, 0).

The corresponding complex C•(w,m, λ) is

mA
xyE

mA

mA

(xy)
2
xE

(yx)
2
E

mA
xyxJm(λ)

2. Let w be the word

C(2,∞, 0)− (2, 0) ∼ (1, 0)− C(1,−1, 0) ∼ C(2, 1, 1)− (2, 1)

∼ (1, 1)− C(1, 3, 1) ∼ C(2,−3, 0)− (2, 0) ∼ (1, 0)− C(1,−3, 0)

∼ C(2, 3, 1)− (2, 1) ∼ (1, 1)− C(1,∞, 1).

Then the string complex C•(w) is

A
e21

t
2
e12

A

A
te21

A

3. The factor A/J is described by the infinite string complex C•(w):

. . .
e21

A
te12

A
e21

A.

. . .
te12

A
e21

A
te12

The corresponding word w is

· · · − C(2, 1, 2) ∼ C(1,−1, 1)− (1, 1) ∼ (2, 1)− C(2, 1, 1)

∼ C(1,−1, 0)− (1, 0) ∼ (2, 0)− C(2,−1, 0) ∼ C(1, 1, 1)− (1, 1)

∼ (2, 1)− C(2,−1, 1) ∼ C(1, 1, 2)− . . .
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3.3.3 Gelfand Problem

In this case there are 2 indecomposable projective H-modules H1 (the first
column) and H2 (both the second and the third columns). There are 3 inde-
composable A-projectives A

i
(i = 1, 2, 3); A

i
correspond to the i-th column

of A. We have H⊗AA1 ' H1 and H⊗AA2 ' H⊗AA3 ' H2. So the relation
∼ is given by:

1. (2, n) ∼ (2, n);

2. C(j, l, n) ∼ C(j,−l, n− sgn l) if l is even;

3. C(j, l, n) ∼ C(j ′,−l, n− sgn l) (j ′ 6= j) if l is odd.

Hence a special end is always (2, n).

Example 3.12. 1. Consider the special word w:

(2, 0)− C(2,−2, 0) ∼ C(2, 2, 1)− (2, 1) ∼ (2, 1)− C(2,−4, 1)

∼ C(2, 4, 2)− (2, 2) ∼ (2, 2)− C(2, 2, 2) ∼ C(2,−2, 1)− (2, 1)

∼ (2, 1)− C(2,−1, 1) ∼ C(1, 1, 2)− (1, 2) .

The complex C•(w, 0) is obtained by gluing from the complex of H-modules

H2 2 H2

H2 4 H2

H2 2 H2

H1 1 H2

Here the numbers inside arrows show the colengths of the corresponding im-
ages. We mark dashed lines defining gluings with arrows going from the bigger
complex (with respect to the ordering in E

j,n
) to the smaller one. When we

construct the corresponding complex of A-modules, we replace each H2 by
A2 and A3 starting with A2 (since δ = 0; if δ = 1 we start from A3). Each
next choice is arbitrary with the only requirement that every dashed line
must touch both A2 and A3. (Different choices lead to isomorphic complexes:
one can see it from the pictures below.) All horizontal mappings must be
duplicated by slanting ones, carried along the dashed arrow from the starting
point or opposite the dashed arrow with the opposite sign from the ending
point (the latter procedure will be marked by ‘−’ near the duplicated arrow).
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So we get the A-complex

A2 2 A2

A3

−

4

4

2

2

A3

2

A2 2

2

A2

A1

−1

1 A3

All mappings are uniquely defined by the colengths in the H-complex, so we
just mark them with ‘l.’

2. Let w be the bispecial word

(2, 2)− C(2, 2, 2) ∼ C(2,−2, 1)− (2, 1) ∼ (2, 1)− C(2, 2, 1)

∼ C(2,−2, 0)− (2, 0) ∼ (2, 0)− C(2,−4, 0) ∼ C(2, 4, 1)− (2, 1)

∼ (2, 1)− C(2, 6, 1) ∼ C(2,−6, 0)− (2, 0)

The complex C•(w,m, 1, 0) is the following one:

aA3 ⊕ bA2
M1

−−M1

mA3

2

−

2
mA2

2 −

2 mA3

mA3 4 mA2

mA2

4

M2 aA2 ⊕ bA3

where a = [(m+1)/2], b = [m/2], so a+b = m. (The change of δ1, δ2 transpose
A2 and A3 at the ends.) All arrows are just α

l
E, where α

l
is defined by the

colength l, except of the “end” matrices M
i
. To calculate the latter, write

α
l
E for one of them (say, M1) and α

l
J for another one (say, M2), where J is

the Jordan m×m cell with eigenvalue 1, then put the odd rows or columns
into the first part of M

i
and the even ones to its second part. In our example

we get

M1 = α2













1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0













, M2 = α6













1 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 1 1 0 0
0 0 0 1 1













.

(We use columns for M1 and rows for M2 since the left end is the source and
the right end is the sink of the corresponding mapping.)
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3. The band complex C•(w, 1, λ), where w is the cycle

(2, 1) ∼ (2, 1)− C(2,−2, 1) ∼ C(2, 2, 2)− (2, 2) ∼ (2, 2)− C(2, 4, 2)

∼ C(2,−4, 1)− (2, 1) ∼ (2, 1)− C(2, 6, 1) ∼ C(2,−6, 0)− (2, 0)

∼ (2, 0)− C(2,−4, 0) ∼ C(2, 4, 1)

is

mA2 2

−

2

mA2

4
λ

−
4

λ
mA3

2

4

−

4

−

2

mA2

6

mA3 6 mA2

mA3

4λ −

4λ mA3

Superscript ‘λ’ denotes that the corresponding mapping must be twisted by
J

m
(λ).

4. The projective resolution of the simple A-module U1 is

A2 1 A1

A1

−

1

1 A3

1

It coincides with the usual string complex C•(w), where w is

(1, 0)− C(1,−1, 0) ∼ C(2, 1, 1)− (2, 1) ∼ (2, 1)− C(2,−1, 1)

∼ C(1, 1, 2)− (1, 2).

The projective resolution of U2 (U3) is A1 → A2 (respectively A1 → A3),
which is the special string complex C•(w, 0) (respectively C•(w, 1)), where

w = (2, 0)− C(2,−1, 0) ∼ C(1, 1, 1)− (1, 1).

Note that gl.dim A = 2. It is due to the fact that the case 1 from page 103
occur: H⊗A A1 ' H1. One can prove the following consequence of the above
calculations.

Corollary 3.13. Let A be a nodal ring. Suppose that there is no simple A-

module U such that H ⊗A U is a simple H-module. Then gl.dim A = ∞;

moreover, the finitistic dimension ( in the sense of [3]) of A equals 1, i.e. for

every A-module M either proj.dimM ≤ 1 or proj.dimM =∞.
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4 Projective Curves

In this section we consider “global” analogues of the results of the preced-
ing one, namely, the derived categories of the categories CohX of coherent
sheaves over some projective curves X. Again we first consider a general
framework (“projective configurations,” which are an analogue of Backström
rings), when the calculations in CohX can be reduced to some matrix prob-
lems. Then we apply this technique to those classes of projective configura-
tions, where the resulting matrix problem is tame. Throughout this section we
suppose that the field k is algebraically closed. Analogous results can also be
deduced for non-closed fields using the technique of [19], though the picture
becomes more complicated.

4.1 Projective Configurations

Definition 4.1. Let X be a projective curve over k, which we suppose re-
duced but possibly reducible. We denote by π : X̃ → X its normalization;
then X̃ is a disjoint union of smooth curves. We call X a projective configura-

tion if all components of X̃ are rational curves (i.e. of genus 0) and all singular
points p of X are ordinary, i.e. the dimension of the tangent cone at p or, the
same, the number of linear independent tangent directions at this point equals
its multiplicity. Algebraically it means that, if π−1(p) = { y1, y2, . . . , ym

}, the
image of O

X,p
in

∏

m

i=1
O

X̃,yi
contains

∏

m

i=1
m

i
, where m

i
is the maximal ideal

of O
X̃,yi

.

We denote by S the set of singular points of X, by S̃ = π
−1(S) its preimage

in X̃ and consider S (S̃) as a closed subvariety of X (resp. X̃). Let ε : S → X

and ε̃ : S̃ → X̃ be their embeddings, and π : S̃ → S be the restriction
of π onto S̃. We also put O = O

X
, ˜O = O

X̃
, S = O

S
, R = O

S̃
, and

denote by J the conductor of ˜O in O, i.e. the maximal sheaf of π∗ ˜O-ideals
contained in O. Note that S

p
' O

p
/J

p
and R

y
' ˜O

y
/(π∗J )

y
. Since S and

S̃ are 0-dimensional, hence affine, the categories CohS and Coh S̃ can be
identified with the categories of modules, respectively, S-mod and R-mod,
where S =

∏

p∈S
S

p
and R =

∏

y∈S̃
R

y
. If X is a projective configuration,

these algebras are semisimple, namely S
p
' k(p) and R

y
' k(y). Moreover,

one easily sees that J ' π∗
˜O(−S̃), where ˜O(−S̃) = ˜O(−

∑

y∈S̃
y).

Since X is a projective variety, Serre’s theorem [40, Theorem III.5.17]
shows that for every coherent sheaf F ∈ CohX there is an integer n0 such
that all sheaves F(n) for n ≥ n0 are generated by their global sections, or,
the same, there are epimorphisms mO → F(n). It easily implies that the
derived category D−(CohX) can be identified with the category of fractions
H−(VB X)[Q−1], where VB X is the category of locally free coherent sheaves
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(equivalently, the category of vector bundles [40, Exercise II.5.18]) over X and
Q is the set of quasi-isomorphisms in H−(VB X). So we always present ob-
jects from D−(CohX) and from D−(Coh X̃) as complexes of vector bundles.
We denote by T : D−(CohX) → D−(Coh X̃) the left derived functor Lπ∗.
Again if C• is a complex of vector bundles, TC• coincides with π

∗
C•.

Just as in Subsection 3.1, we define the category of triples T = T (X):
Objects of T are triples (A•,B•, ι), where

- A• ∈ D−(Coh X̃) (we always present it as a complex of vector bundles);

- B• ∈ D−(CohS) (we always present it as a complex with zero differen-
tial);

- ι is a morphism B• → π∗ε̃
∗
A• from D−(CohS) such that the induced

morphism ιR : π∗
B• → ε̃

∗
A• is an isomorphism in D−(CohR).

A morphism from a triple (A•,B•, ι) to a triple (A′
•,B

′
•, ι

′) is a pair (Φ, φ),
where

- Φ : A• → A
′
• is a morphism from D−(Coh X̃);

- φ : B• → B
′
• is a morphism from D−(CohS);

- the diagram

B•
ι

φ

π∗ε̃
∗
A•

π∗ε̃
∗Φ

B
′
•

ι
′

π∗ε̃
∗
A

′
•

(7)

commutes in D−(CohS).

We define a functor F : D−(CohX)→ T (X) setting F(C•) = (π∗
C•, ε

∗
C•, ι),

where ι : ε∗C• → π∗ε̃
∗(π∗
C•) is induced by the natural isomorphism π

∗
ε
∗
F• '

ε̃∗π
∗
F•.. Just as in Section 1, the following theorem holds (with almost the

same proof, see [12]).

Theorem 4.2. The functor F is a representation equivalence, i.e. it is dense

and conservative.

Remark. We do not now whether it is full, though it seems very plausible.

Just as for Backström rings, most projective configurations are vector bundle

wild. Namely, in [29] it was shown that the only projective curves, which are
not vector bundle wild, are the following:

• Projective line P1.

• Elliptic curves, i.e. smooth projective curves of genus 1, or, the same,
smooth plane cubics.
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• Projective configurations of types A and Ã (see the next subsection for
their definitions).

Actually, projective line and projective configurations of type A are vector

bundle finite, i.e. have only finitely many indecomposable vector bundles
(up to isomorphism and natural twists), while elliptic curves and projective
configurations of type Ã are vector bundle tame. Since the derived cate-
gory D−(CohX) (even D b(CohX) ) contains CohX as a full subcategory, it
can never be representation finite. We always have one-parameter family of
skyscrapers, such as k(x) (x ∈ X). If the curve X is smooth, the category
CohX is hereditary, thus its indecomposable objects are just shifts of sheaves.
Moreover, every coherent sheaf is a direct sum of a vector bundle and several
skyscrapers, i.e. sheaves supported in one point. The latter are just O/mk

x

for some x ∈ X and some integer k, so they form one-parameter families.
Hence, if a smooth curve is vector bundle tame, it is derived tame as well. It
happens, just as in the case of pure noetherian rings, that all vector bundle
tame projective curves are also derived tame, though for projective configu-
rations of types A and Ã the structure of skyscrapers is more complicated (it
involve modules over local rings, which are nodal) and, moreover, there are
“mixed” sheaves, which are neither vector bundles (even not torsion free) nor
skyscrapers.

4.2 Configurations of Types A and Ã

Now we suppose that X is a projective configurations and all singular points
of X are nodes (or double points). To such a curve one associates a graph
∆(X) called its intersection graph or dual graph. The vertices of ∆(X) are the
irreducible components of X and the edges of ∆(X) are the singular points
of X. The ends of an edge p are the components containing this point. In
particular, if p only belongs to one component, it is a loop in ∆(X). Note
that the graph ∆(X) does not completely define X. For instance, consider
the case, when ∆(X) is the graph of type D̃4, i.e.

• •

•

• •

The component corresponding to the central point contains 4 singular points.
Therefore, their harmonic ratio is invariant under isomorphisms of P1 and can
be an arbitrary scalar λ ∈ k \ { 0, 1 } (these points can always be chosen as
0, 1, λ,∞). Thus the configurations with this dual graph but different values
of λ are not isomorphic.

We say that a projective configuration X is
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• of type A if its intersection graph is a chain:

1 2 . . . s

• of type Ã if its intersection graph is a cycle:

1 2 . . . s

(If s = 1, the projective configuration of type A is just a projective line,
while the projective configuration of type Ã is a nodal cubic.)

In other words, in the A-case irreducible components X1, X2, . . . , Xs
and sin-

gular points p1, p2, . . . , ps−1 can be arranged so that p
i
∈ X

i
∩X

i+1, while in the
Ã-case the components X1, X2, . . . , Xs

and the singular points p1, p2, . . . , ps

can be so arranged that p
i
∈ X

i
∩ X

i+1 for i < s and p
s
∈ X

s
∩ X1. Note

that in the A-case s > 1, while in the Ã-case s = 1 is possible: then there is
one component with one ordinary double point (a nodal plane cubic). These
projective configurations are global analogues of nodal rings, and the calcu-
lations according Theorem 4.2 are quite similar to those of Section 3. We
present here the calculations for the Ã-case and add remarks explaining what
changes should be made for the A-case.

If s > 1, the normalization of X is just a disjoint union
⊔

s

i=1
X

i
; for

uniformity, we write X1 = X̃ if s = 1. We also denote X
qs+i

= X
i
. Certainly,

X
i
' P1 for all i. Every singular point p

i
has two preimages p′

i
, p

′′
i

in X̃;
we suppose that p′

i
∈ X

i
corresponds to the point ∞ ∈ P1 and p

′′
i
∈ X

i+1

corresponds to the point 0 ∈ P1. Recall that any indecomposable vector
bundle over P1 is isomorphic to OP1(d) for some d ∈ Z. So every indecom-
posable complex from D−(Coh X̃) is isomorphic either to 0 → O

i
(d) → 0

or to 0 → O
i
(−lx) → O

i
→ 0, where O

i
= O

Xi
, d ∈ Z, l ∈ N and

x ∈ X
i
. The latter complex corresponds to the indecomposable sky-scraper

sheaf of length l and support {x }. (It is isomorphic in the derived category
to any complex 0 → O

i
((k − l)x) → O

i
(kx) → 0 with arbitrary k ∈ Z.)

We denote this complex by C(x,−l, n) and by C(x, l, n + 1). The complex
0→ O

i
(d)→ is denoted by C(p′

i
, dω, n) and by C(p′′

i−1
, dω, n). As before, n is

the unique place, where the complex has non-zero homologies. We define the
symmetric relation ∼ for these symbols setting C(x,−l, n) ∼ C(x, l, n + 1)
and C(p′

i
, dω, n) ∼ C(p′′

i−1
, dω, n).

Let Zω = (Z ⊕ { 0 }) ∪ Zω, where Zω = { dω | d ∈ Z }. We introduce an
ordering on Zω, which is natural on N, on −N and on Zω, but l < dω < −l for
each l ∈ N, d ∈ Z. Recall that Hom(O

i
(d),O

i
(d′)) can be considered as the

space of homogeneous polynomial of degree d′−d in homogeneous coordinates
on P1 if d′ ≥ d; otherwise it is zero. Note also that C

n
(x) ' k if C = C(x, l, n)

for some l ∈ Zω. It easily implies the following analogue of Lemma 3.5.
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Lemma 4.3. There is a morphism of complexes C• = C(x, z, n) → C ′• =
C(x, z′, n) such that its nth component induces a non-zero mapping (actually

an isomorphism) C
n
(x) → C

′
n
(x) if and only if z ≤ z

′ in Zω. Moreover,

if z = dω, z′ = d
′
ω, d

′
> d and x ∈ S, hence also C• = C(x′, z, n) and

C
′
• = C(x′, z′, n) for another singular point x′, there is a morphism φ : C• → C

′
•

such that φ(x) 6= 0, but φ(x′) = 0.

We introduce the ordered sets E
x,n

= {C(x, z, n) | z ∈ Zω
} with the order-

ing inherited from Zω, We also put F
x,n

= { (x, n) } and (p′
i
, n) ∼ (p′′

i−1
, n)

for all i, n. Lemma 4.3 shows that the category of triples T (X) can be
again described in terms of the bunch of chains {E

x,n
, F

x,n
}. Thus we can

describe indecomposable objects in terms of strings and bands just as for
nodal rings. We leave the corresponding definitions to the reader; they are
quite analogous to those from Section 3. If we consider a configuration of
type A, we have to exclude the points p′

s
, p

′′
s

and the corresponding sym-
bols C(p′

s
, z, n), C(p′′

s
, z, n), (p′

s
, n), (p′′

s
, n). Thus in this case C(p′′

s−1
, dω, n)

and C(p′
1
, dω, n) are not in ∼ relation with any symbol. It makes possible

finite or one-side infinite full strings, while in the Ã-case only two-side infi-
nite strings are full. Note that an infinite word must contain a finite set of
symbols (x, n) with any fixed n; moreover there must be n0 such that n ≥ n0

for all entries (x, n) that occur in this word.

If x /∈ S̃ (thus z /∈ Zω), the complex C(x, z, n) vanishes under ε̃∗, so gives
no essential input into the category of triples. It gives rise to the n-th shift of
a sky-scraper sheaf with support at the regular point π(x). In the language of
bunches of chains it follows from the fact that (x, n) 6∼ (x′, n) for any x′ 6= x,
hence the only full words containing (x, n) are (x, n) − C(x, l, n) for some
l ∈ Z \{ 0 }. Therefore, in the following examples we only consider complexes
C(x, z, n) with x ∈ S̃. Moreover, we confine most examples to the case s = 1
(so X is a nodal cubic). If s > 1, one must distribute vector bundles in the
pictures below among the components of X̃.

Example 4.4. 1. First of all, even a classification of vector bundles is non-
trivial in Ã case. They correspond to the bands concentrated at 0 place, i.e.
such that the underlying cycle w is of the form

(p′
s
, 0) ∼ (p′′

s
, 0)− C(p′′

s
, d1ω, 0) ∼ C(p′

1
, d1ω, 0)− (p′

1
, 0)

∼ (p′′
1
, 0)− C(p′′

1
, d2ω, 0) ∼ C(p′

2
, d2ω, 0)− (p′

2
, 0)

∼ (p′′
2
, 0)− C(p′′

2
, d3ω, 0) ∼ · · · ∼ C(p′

s
, d

rs
ω, 0)

(obviously, its length must be a multiple of s, and we can start from any place
p
′
k
, p

′′
k
). Then C•(w,m, λ) is actually a vector bundle, which can be schemati-
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cally described as the following gluing of vector bundles over X̃.

•
d1

•

λ

•
d2

•

•
d3

•

...

•
drs

•

Here horizontal lines symbolize line bundles over Xi
of the superscripted

degrees, their left (right) ends are basic elements of these bundles at the
point ∞ (respectively 0), and the dashed lines show which of them must be
glued. One must take m copies of each vector bundle from this picture and
make all gluings trivial, except one going from the uppermost right point to
the lowermost left one (marked by ‘λ’), where the gluing must be performed
using the Jordan m×m cell with eigenvalue λ. In other words, if e1, e2, . . . , em

and f1, f2, . . . , fm
are bases of the corresponding spaces, one has to identify f1

with λe1 and f
k

with λe
k
+ e

k−1 for k > 1. We denote this vector bundle over
X by V(d, m, λ), where d = (d1, d2, . . . , drs

); it is of rank mr and of degree
m

∑

r

i=1
d

i
. If r = s = 1, this picture becomes

•
d

λ

•

If r = m = 1, we obtain all line bundles: they are V((d1, d2, . . . , ds
) , 1, λ) (of

degree
∑

s

i=1
d

i
). Thus the Picard group is Zs

× k∗.

In the A-case, there are no bands concentrated at 0 place, but there are finite
strings of this sort:

C(p′′
1
, d1ω, 0)− (p′

1
, 0) ∼ (p′′

1
, 0)− C(p′′

1
, d2ω, 0) ∼

∼ C(p′
2
, d2, 0)− (p′

2
, 0) ∼ (p′′

2
, 0)− C(p′′

2
, d3, 0) ∼

· · · ∼ C(p′
s−1

, d
s−1ω, 0)− (p′

s−1
, 0) ∼ (p′′

s−1
, 0)− C(p′′

s−1
, d

s
ω, 0)

So vector bundles over such configurations are in one-to-one correspondence
with integral vectors (d1, d2, . . . , ds

); in particular, all of them are line bundles
and the Picard group is Zs. In the picture above one has to set r = 1 and to
omit the last gluing (marked with ‘λ’).



120. Y.A. Drozd

2. From now on s = 1, so we write p instead of p1. Let w be the cycle

(p′′, 1) ∼ (p′, 1)− C(p′,−2, 1) ∼ C(p′, 2, 2)− (p′, 2) ∼ (p′′, 2)−

− C(p′′, 3ω, 2) ∼ C(p′, 3ω, 2)− (p′, 2) ∼ (p′′, 2)− C(p′′, 3, 2) ∼

∼ C(p′′,−3, 1)− (p′′, 1) ∼ (p′, 1)− C(p′, 1, 1) ∼ C(p′,−1, 0)−

− (p′, 0) ∼ (p′′, 0)− C(p′′,−2, 0) ∼ C(p′′, 2, 1).

Then the band complex C•(w,m, λ) can be pictured as follows:

• ◦ 2 •

λ

◦

•
3

•

◦ • 3 ◦ •

• ◦ 1 • ◦

◦ • 3 ◦ •

Again horizontal lines describe vector bundles over X̃. Bullets and circles
correspond to the points∞ and 0; circles show those points, where the corre-
sponding complex gives no input into π∗ε̃

∗
A•. Horizontal arrows show mor-

phisms in A•; the numbers l inside give the lengths of factors. For instance,
the first row in this picture describes the complex C(p′,−2, 1), the second one
is C(p′, 3ω, 2) (or, the same, C(p′′, 3ω, 2) ) and the last one is C(p′′,−3, 0).
Dashed and dotted lines describe gluings. Dashed lines (between bullets) cor-
respond to mandatory gluings arising from relations (p′, n) ∼ (p′′, n) in the
word w, while dotted lines (between circles) can be drawn arbitrarily; the
only conditions are that each circle must be an end of a dotted line and the
dotted lines between circles sitting at the same level must be parallel (in our
picture they are between the 1st and 3rd levels and between the 4th and 5th
levels). The degrees of line bundles in complexes C(x, z, n) with z ∈ N∪(−N)
(they are described by the levels containing 2 lines) can be chosen as d − l

and d with arbitrary d, otherwise (in the second row) they are superscripted
over the line. We set d = 1 in the last row and d = 0 elsewhere. Thus the
resulting complex is

V((−2, 3,−3), m, 1) −→ V((0, 0,−1,−2), m, λ) −→ V((0, 1), m, 1)

(we do not precise mappings, but they can be easily restored). Note that
our choice of d’s enables to consider the components of this complex as the
“standard” vector bundles V(d, m, λ) from the preceding example.
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3. If s = 1, the sky-scraper sheaf k(p) is described by the complex

· · · ◦ • ◦ • 1 ◦ •

· · · • ◦ 1 • ◦ • ◦ 1 • ◦

· · · ◦ • 1 ◦ • ◦ • 1 ◦ •

· · · • ◦ • ◦ 1 • ◦

which is the string complex corresponding to the word

. . . C(p′,−1, 2)− (p′, 2) ∼ (p′′, 2)− C(p′′, 1, 2) ∼ C(p′′,−1, 1)−

− (p′′, 1) ∼ (p′, 1)− C(p′, 1, 1) ∼ C(p′,−1, 0)− (p′, 0) ∼

∼ (p′′, 0)− C(p′′,−1, 0) ∼ C(p′′, 1, 1)− (p′′, 1) ∼ (p′, 1)−

− C(p′,−1, 1) ∼ C(p′, 1, 2)− (p′, 2) ∼ (p′′, 2)− C(p′′,−1, 2) . . .

4. The band complex C(w,m, λ) , where w is the cycle

(p′, 0) ∼ (p′′, 0)− C(p′′,−3ω, 0) ∼ C(p′,−3ω, 0)−

− (p′, 0) ∼ (p′′, 0)− C(p′′, 0ω, 0) ∼ C(p′, 0ω, 0)− (p′, 0) ∼

∼ (p′′, 0)− C(p′′,−1, 0) ∼ C(p′′, 1, 1)− (p′′, 1) ∼ (p′, 1)−

− C(p′′, 2, 1) ∼ C(p′,−2, 0)− (p′, 0) ∼ (p′′, 0)− C(p′′,−4, 0) ∼

∼ C(p′′, 4, 1)− (p′′, 1) ∼ (p′, 1)− C(p′, 5, 1) ∼ C(p′,−5, 0)−

− (p′, 0) ∼ (p′′, 0)− C(p′′, 0ω, 0) ∼ C(p′, 0ω, 0)

describes the complex

•
-3

•
λ

•
0

•

◦ • 1 ◦ •

• ◦ 2 • ◦

◦ • 4 ◦ •

• ◦ 5 • ◦

•
0

•

or
V((0, 0), m, 1)⊕ V((0, 0), m, 1) −→ V((−3, 0, 1, 2, 4, 5, 0), m, λ).
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Its homologies are zero except the place 0, so it corresponds to a coherent
sheaf. One can see that this sheaf is a “mixed” one (neither torsion free nor
sky-scraper). Note that this time we could trace dotted lines another way,
joining the first free end with the last one and the second with the third:

•
-3

•
λ

•
0

•

◦ • 1 ◦ •

• ◦ 2 • ◦

◦ • 4 ◦ •

• ◦ 5 • ◦

•
0

•

It gives an isomorphic object in D (CohX) :

V((0, 0, 0, 0), m, 1) −→ V((-3, 0, 1, 5, 0), m, λ)⊕ V((2, 4), m, 1).

Remark 4.5. In [12] we used another encoding of strings and bands for
projective configurations, which is equivalent but uses more specifics of the
situation. In this paper we prefer to use a uniform encoding, which is the
same both for nodal rings and for projective configurations.

4.3 Application to Cohen–Macaulay Modules

The description of vector bundles has an important application in the theory
of Cohen–Macaulay modules over surface singularities.

Definition 4.6. 1. By a normal surface singularity over the field k, which
we suppose algebraically closed, we mean a complete noetherian k-algebra A
such that:

• Kr.dimA = 2;

• A/m ' k, where m is the maximal ideal of A;

• A has no zero divisors and is normal, i.e. integrally closed in its field of
fractions;

• A is not regular, i.e. gl.dimA =∞.

We denote by X the scheme SpecA, by p ∈ X the point corresponding to the
maximal ideal m (the unique closed point of X) and by X̆ the open subscheme
X \ { p }.
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2. A resolution of such a singularity is a morphism of k-schemes π : X̃ → X

such that:

• X̃ is smooth;

• π is projective (hence closed) and birational;

• the restriction of π onto X̃ \E, where E = π−1(p)red, is an isomorphism
X̃ \E → X̆; we shall identify X̃ \ E with X̆ using this isomorphism.

We call E the exceptional curve of the resolution π (it is indeed a projective
curve) and denote by E1, E2, . . . , Es

its irreducible components.

3. A resolution π : X̃ → X is called minimal, if it cannot be decomposed as
X̃ → X

′
→ X, where X ′ is also smooth.

Recall that such a resolution, as well as a minimal resolution, always
exists (cf. e.g. [47]).

In [43] Kahn established a one-to-one correspondence between Cohen–
Macaulay modules over a normal surface singularity A and a class of vector
bundles over a reduction cycle Z ⊆ X̃, which is given by a specially chosen ef-
fective divisor

∑

s

i=1
m

i
E

i
(m

i
> 0). His result becomes especially convenient

if this singularity is minimally elliptic in the sense of [46]. It means that A is
Gorenstein (i.e. inj.dim A = 2) and dim H1(X̃,O

X̃
) = 1. Let π : X̃ → X be

the minimal resolution of a minimally elliptic singularity, Z be its fundamen-

tal cycle, i.e. the smallest effective cycle such that all intersection numbers
(Z.E

i
) are non-positive. Then Z is a reduction cycle in the sense of Kahn,

and the following result holds.

Theorem 4.7 (Kahn). There is one-to-one correspondence between Cohen–

Macaulay modules over A and vector bundles F over Z such that F ' G ⊕

nO
Z
, where

(i) G is generically spanned, i.e. global sections from Γ(E,G) generate G

everywhere, except maybe finitely many closed points;

(ii) H1(E,G) = 0;

(iii) n ≥ dimk H0(E,G(Z)).

Especially, indecomposable Cohen–Macaulay A-modules correspond to vector

bundles F ' G ⊕ nO
Z
, where either G = 0, n = 1 or G is indecomposable,

satisfies the above conditions (i,ii) and n = dimk H0(E,G(Z)). (The vector

bundle O
Z

corresponds to the regular A-module, i.e. A itself.)

Kahn himself deduced from this theorem and the results of Atiyah [1] a de-
scription of Cohen–Macaulay modules over simple elliptic singularities, i.e.
such that E is an elliptic curve (smooth curve of genus 1). Using the results
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of subsection 4.2, one can obtain an analogous description for cusp singulari-

ties, i.e. such that E is a projective configuration of type Ã. Briefly, one gets
the following theorem (for more details see [30]).

Theorem 4.8. There is a one-to-one correspondence between indecomposable

Cohen–Macaulay modules over a cusp singularity A, except the regular module

A, and vector bundles V(d, m, λ), where d = (d1, d2, . . . , drs
) satisfies the

following conditions:

• d > 0, i.e. d
i
≥ 0 for all i and d 6= (0, 0, . . . , 0);

• no shift of d, i.e. a sequence (d
k+1, . . . , drs

, d1, . . . , dk
), contains a sub-

sequence (0, 1, 1, . . . , 1, 0), in particular (0, 0);

• no shift of d is of the form (0, 1, 1, . . . , 1).

Moreover, from Theorem 4.7 and the results of [29] one gets the following
corollary [30]:

Theorem 4.9. If a minimally elliptic singularity A is neither simple ellip-

tic nor cusp, it is Cohen–Macaulay wild, i.e. the classification of Cohen–

Macaulay A-modules includes the classification of representations of all

finitely generated k-algebras.

An important example of Cohen–Macaulay tame minimally elliptic singular-
ities are the surface singularities of type T

pqr
, i.e. factor rings

k[[x, y, z]]/(xp + y
q + z

r + λxyz) (1/p+ 1/q + 1/r ≤ 1).

They are simple elliptic if 1/p+ 1/q + 1/r = 1 and cusp otherwise [49].
As a consequence of Theorem 4.8 and the Knörrer periodicity theorem

[44, 50], one also obtains a description of Cohen–Macaulay modules over hy-

persurface singularities of type T
pqr

, i.e. factor rings

k[[x1, x2, . . . , xn
]]/(xp

1
+ x

q

2
+ x

r

3
+ λx1x2x3 +Q) (1/p+ 1/q + 1/r ≤ 1),

where Q is a non-degenerate quadratic form of x4, . . . , xn
, and over curve

singularities of type T
pq

, i.e. factor rings

k[[x, y]]/(xp + y
q + λx

2
y

2) (1/p+ 1/q ≤ 1/2).

The latter fills up a flaw in the result of [27], where one has only proved
that the curve singularities of type T

pq
are Cohen–Macaulay tame, but got

no explicit description of modules.
Suppose that char k = 0. Then it is known [2, 32] that a normal surface

singularity A is Cohen–Macaulay finite, i.e. has only a finite number of non-
isomorphic indecomposable Cohen–Macaulay modules, if and only if it is a
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quotient singularity, i.e. A ' k[[x, y]]G, where G is a finite group of automor-
phisms. (I do not know a criterion of finiteness if char k > 0). Just in the same
way one can show that all singularities of the form A = BG, where B is either
simple elliptic or cusp, are Cohen–Macaulay tame, and obtain a description
of Cohen–Macaulay modules in this case. Actually such singularities coincide
with the so called log-canonical singularities [45]. There is an evidence that all
other singularities are Cohen–Macaulay wild, so Table 1 completely describes
Cohen–Macaulay types of isolated singularities (for the curve case see [27];
we mark by ‘?’ the places, where the result is still a conjecture).

Table 1.

Cohen–Macaulay types of singularities

CM type curves surfaces hypersurfaces

finite dominate quotient simple
A-D-E (A-D-E)

tame dominate log-canonical T
pqr

T
pq

(only ?) (only ?)

wild all other all other ? all other ?
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Monodromy

Wolfgang Ebeling

Dedicated to Gert-Martin Greuel on the occasion of his 60th birthday

Abstract

Let (X,x) be an isolated complete intersection singularity and let
f : (X,x)→ (C, 0) be the germ of an analytic function with an isolated
singularity at x. An important topological invariant in this situation
is the Picard-Lefschetz monodromy operator associated to f . We give
a survey on what is known about this operator. In particular, we re-
view methods of computation of the monodromy and its eigenvalues
(zeta function), results on the Jordan normal form of it, definition and
properties of the spectrum, and the relation between the monodromy
and the topology of the singularity.

Introduction

The word ’monodromy’ comes from the greek word µoνo− δρoµψ and means
something like ’uniformly running’ or ’uniquely running’. According to [99,
3.4.4], it was first used by B. Riemann [135]. It arose in keeping track of
the solutions of the hypergeometric differential equation going once around
a singular point on a closed path (cf. [30]). The group of linear substitutions
which the solutions are subject to after this process is called the monodromy

group.
Since then, monodromy groups have played a substantial rôle in many

areas of mathematics. As is indicated on the webside ’www.monodromy.com’
of N.M. Katz, there are several incarnations, classical and l-adic, local and
global, arithmetic and geometric. Here we concentrate on the classical lo-
cal geometric monodromy in singularity theory. More precisely we focus on
the monodromy operator of an isolated hypersurface or complete intersection
singularity. The investigation of this operator started in 1967 with the proof

1991 Mathematics Subject Classification. 14D05, 32S40
Key words. Monodromy, zeta function, spectrum, isolated singularity
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of the famous monodromy theorem (see §1). This theorem can be proved
using the theory of the Gauß-Manin connection which was introduced by
E. Brieskorn for isolated hypersurface singularities [28]. The study of this
connection for isolated complete intersection singularities was started by G.-
M. Greuel in his thesis [76].

We try to review the results of 37 years of investigation of the monodromy
operator. The results include results on the zeta function of the monodromy
and the spectrum of a singularity. The monodromy contains a lot of informa-
tion about the topology of the singularity. This was one motivation to study
the monodromy. We review the known facts in the last section.

For a basic introduction to the subject for non-specialists see [55].

Aspects which are not mentioned or only touched in this survey are

• Monodromy of a polynomial function. For a survey on this topic see
[40] and [87].

• Generalizations to non-isolated singularities. Here we refer to the survey
of D. Siersma [151].

• Monodromy groups. We do not talk about monodromy groups of iso-
lated complete intersection singularities. We refer to our book [51] for
this topic.

• Braid monodromy. Recently, M. Lönne introduced a notion of braid
monodromy of singularities. He computed the braid monodromy and
the fundamental group of the complement of the discriminant of a
Brieskorn-Pham singularity [116], making a substantial contribution to
the last problem [29, Problème 20] of Brieskorn’s list of problems on
monodromy.

1 The Monodromy Operator

Let (Y, 0) ⊂ (CN
, 0) be an isolated complete intersection singularity (abbrevi-

ated ICIS in the sequel) of dimension n+1, i.e. (Y, 0) is the germ of an analytic
variety of pure dimension n+1 with an isolated singularity at the origin given
by Y = F−1(0), where F = (f1, . . . , fN−n−1) : (CN

, 0) → (CN−n−1
, 0) is the

germ of an analytic mapping. Let f : CN → C be an analytic function such
that the restriction f : Y → C which we denote by the same symbol has an
isolated singularity at the origin. We assume that f(0) = 0. Let ε > 0 be
small enough such that the closed ball B

ε
⊂ CN of radius ε around the origin

in CN intersects the fibre f−1(0) transversely. Let 0 < δ � ε be such that
for t in the disc D

δ
⊂ C around the origin, the fibre f−1(t)∩ Y intersects the

ball B
ε

transversely. Let X
t
:= f

−1(t) ∩ B
ε
∩ Y for t ∈ D

δ
,

X := f
−1(D

δ
) ∩ B

ε
∩ Y , X

′ := X \X0 , D
′ := D \ {0} .
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Then (X0, 0) is an ICIS of dimension n. In the important special case when
Y is smooth, (Y, 0) = (Cn+1

, 0), then (X0, 0) is an isolated hypersurface sin-
gularity. By a result of J. Milnor [125] in the case when Y is smooth and
H. Hamm [89] in the general case, the mapping f |

X
′ : X ′ → D

′ is the pro-
jection of a locally trivial C∞ fibre bundle. A fibre X

t
of this bundle is called

Milnor fibre. It has the homotopy type of a bouquet of µ n-spheres where µ
is the Milnor number. Therefore its only interesting homology group is the
group H

n
(X

t
,Z). It is of rank µ. Parallel translation along the path

γ : [0, 1] → Dδ
, t 7→ δe

2πit

,

yields a diffeomorphism h : Xδ
→ X

δ
called the geometric monodromy of the

singularity. It is determined up to isotopy.

Definition 1.1. The induced homomorphism hC

∗ : H
n
(X

δ
,C) → H

n
(X

δ
,C)

(resp. hZ

∗ : H
n
(X

δ
,Z) → H

n
(X

δ
,Z)) is called the complex (resp. integral)

monodromy (operator) of the singularity.

This operator is also sometimes called the Picard-Lefschetz monodromy oper-

ator since the consideration of this operator goes back to E. Picard [133] and
S. Lefschetz [107] (see also [98], [132]).

Theorem 1.2 (Monodromy theorem).

(a) The eigenvalues of h∗ are roots of unity.

(b) The size of the blocks in the Jordan normal form of h∗ is at most (n+
1) × (n + 1).

(c) If (Y, 0) is smooth, then the size of the Jordan blocks for the eigenvalue

1 is at most n× n.

There are many different proofs of this theorem: by A. Borel (unpublished),
E. Brieskorn [28] (for (Y, 0) smooth, generalized by G.-M. Greuel [76]),
C. H. Clemens [33], P. Deligne [35, 36], P. A. Griffiths [79], A. Grothendieck
[80], N. M. Katz [95], A. Landman [100, 101], Lê Dũng Tráng [106] (of (a), for
(b) see the book of E. Looijenga [117]), B. Malgrange [120], and W. Schmid
[146] (see also the survey [79]).

Examples of B. Malgrange [118] show that the bounds on the size of the
Jordan blocks are sharp.

For weighted homogeneous singularities with (Y, 0) smooth, Milnor [125]
has shown that the complex monodromy hC

∗ is diagonalizable. For weighted
homogeneous ICIS this was shown by A. Dimca [39]. For irreducible plane
curve singularities, Lê [104] has shown that the monodromy is of finite or-
der. N. A’Campo [2] has shown that for isolated plane curve singularities
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with more than one branch the monodromy is in general not of finite or-
der. A. H. Durfee [47] has given a necessary and sufficient condition for the
monodromy of a degenerating family of curves to be of finite order.

We now mention several results which are only valid in the case when
(Y, 0) = (Cn+1

, 0). J. Scherk [144] has shown that if f r+1 belongs to the ideal
(∂f/∂x0, . . . , ∂f/∂xn

) of the ring O
n+1 of germs of holomorphic functions on

Cn+1, then the size of the Jordan blocks of hC

∗ is at most (r+1)× (r+1). By
a theorem of J. Briançon and H. Skoda [27], fn+1 ∈ (∂f/∂x0, . . . , ∂f/∂xn

).
Therefore Scherk’s theorem implies the Monodromy theorem. Generalizations
of Scherk’s theorem can be found in [145].

M. G. M. van Doorn and J. H. M. Steenbrink [41] have proved the fol-
lowing supplement to the Monodromy theorem: If there exists a Jordan block
of size (n+ 1)× (n+ 1), then there exists a Jordan block of size n×n for the
eigenvalue 1. Since a plane curve singularity is reducible if and only if hC

∗ has
an eigenvalue 1, this implies Lê’s theorem.

Let f : (Cn+1
, 0) → (C, 0) and g : (Cm+1

, 0) → (C, 0) be two germs
of analytic functions with an isolated singularity at 0. Denote by c

f
and c

g

the complex monodromy operators of f and g respectively. Denote by c
f+g

the complex monodromy operator of the germ f + g. The famous theorem of
M. Sébastiani and R. Thom [150] states that

c
f+g

= c
f
⊗ c

g
.

The author and Steenbrink [64] have proved a generalization of this theorem
for a suspension of an ICIS.

In the case when Y = Cn+1 one can associate to f ∈ C{x0, . . . , xn
} its

Bernstein-Sato polynomial. This is defined as follows. Let s be a new variable.
Then there exists a differential operator P = P (x, s, ∂/∂x) whose coefficients
are convergent power series in s and x0, . . . , x

n
and a nonzero polynomial

b(s) ∈ C[s] satisfying the formal identity

Pf
s = b(s)f s−1

.

The set of all polynomials b(s) ∈ C[s] for which such an identity holds (for
some operator P ) forms an ideal, and the unique monic generator for this
ideal is called the Bernstein-Sato polynomial of f . It is denoted by b

f
(s). Ac-

cording to Malgrange [119, 121] (see also [22]) there is the following relation

to the monodromy of f : The zeros s1, s2, . . . of ˜b
f
(s) := b

f
(s)/s are ratio-

nal and less than 1, the minimal polynomial of the monodromy divides the
polynomial p(t) :=

∏

(t− exp(−2πis
j
)), and on the other hand, p(t) divides

the characteristic polynomial of the monodromy. D. Barlet [18] has shown
that if there exists a k× k Jordan block for the eigenvalue exp(−2πiu) of the
monodromy, then there exist at least k (counted with multiplicity) roots of
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b
f
(s) of the form −q − u with q ∈ [0, n] (0 ≤ u < 1). A generalization of the

Bernstein-Sato polynomial for the case that (Y, 0) is an ICIS was studied by
T. Torrelli [157, 158].

2 Computation of Monodromy

We now review methods to compute the monodromy operator.
We first consider the complex monodromy operator. In the case when

(Y, 0) is smooth, Brieskorn [28] has indicated a method to compute the com-
plex monodromy operator. This method has been implemented by M. Schulze
to Singular [147] (see also [148]).

For plane curve singularities there is an algorithm in the book of D. Eisen-
bud and W. Neumann [68] to compute the Jordan normal form of the complex
monodromy operator from a splicing diagram of the singularity.

For superisolated surface singularities (see the article of E. Artal-Bartolo,
I. Luengo and A. Melle-Hernández in this volume [17]), Artal-Bartolo [12, 14]
has determined the Jordan normal form of the complex monodromy operator.

We now consider the integral monodromy operator. Let Y
η

:= F
−1(η) ∩

B
ε

where η is a regular value of F sufficiently close to 0. Let c := h
Z

∗ be
the integral monodromy operator. The above path γ also induces a map
ĉ : H

n+1(Yη
, X

δ
) → H

n+1(Yη
, X

δ
) on the relative homology groups. (Unless

otherwise stated, we consider homology with integral coefficients). We have
the following diagram with exact rows and commutative squares (cf. [51]):

0 H
n+1(Yη

)

id

H
n+1(Yη

, X
δ
)

bc

H
n
(X

δ
)

c

0

0 H
n+1(Yη

) H
n+1(Yη

, X
δ
) H

n
(X

δ
) 0

Let A be the intersection matrix on Hn+1(Yη
, X

δ
) with respect to a distin-

guished basis of thimbles (cf. [51]). It is a ν×ν-matrix where ν is the number
of thimbles in a distinguished basis of thimbles. One has ν = µ + µ′ where
µ′ is the Milnor number of the singularity (Y, 0). The matrix A is encoded
in the Coxeter-Dynkin diagram of the singularity. This matrix is of the form
A = V + (−1)n

V
t for some upper triangular matrix

V =



















(−1)
n(n+1)

2 ∗ · · · ∗ ∗

0 (−1)
n(n+1)

2

. . .
...

...
...

. . .
. . .

. . .
...

0 · · ·
. . . (−1)

n(n+1)

2 ∗

0 · · · · · · 0 (−1)
n(n+1)

2



















.
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If Y = Cn+1 then V is the matrix of the (integral) Seifert form or of the in-
verse of the variation operator of the singularity (see [11, 45, 98]). For general
(Y, 0), the author and S. M. Gusein-Zade defined in [61] a variation operator
the inverse of which has the matrix V . The operator ĉ is the product of the
Picard-Lefschetz transformations corresponding to the elements of a distin-
guished basis of thimbles (cf. [51]). In the case when Y = C3 and f defines
a simple singularity, the Coxeter-Dynkin diagram is the classical Coxeter-
Dynkin diagram of a root system of type A

µ
, D

µ
, E6, E7, or E8 and ĉ = c is

the corresponding Coxeter element. It follows from [23, Chap. V, §6, Exercice

3] that the matrix ̂C of the operator ĉ is given by ̂C = (−1)n+1
V

−1
V

t (see
also [108]).

F. Lazzeri [102] (see also [103]) and independently A.M. Gabrielov [71]
showed that in the case when Y = Cn+1 the Coxeter-Dynkin diagram is
connected thus extending an earlier result of C.H. Bey [20, 21] for curves.
A. Hefez and Lazzeri [91] computed the intersection matrix of Brieskorn-
Pham singularities solving in this way an open problem stated by Brieskorn
[29] and F. Pham [132].

Gabrielov [70, 72] has given methods to compute the intersection matrix
A for some special singularities. A’Campo [4, 5] and Gusein-Zade [81, 82]
have found a beautiful method to compute the intersection matrix for iso-
lated plane curve singularities using real morsifications. This method was
generalized in [59, 60] to suspensions of fat points.

A rather general method to compute an intersection matrix for isolated
hypersurface singularities using polar curves was found by Gabrielov [73]. This
method was generalized to ICIS in [51]. The author [48, 49] has computed
the characteristic polynomial of the monodromy for the uni- and bimodal
hypersurface singularities in Arnold’s classification [8] and the intersection
matrix A for the elliptic hypersurface singularities [50]. Gusein-Zade [83] gave
a recursive formula for the characteristic polynomials of the monodromy for
the singularities of Arnold’s series of singularities [8].

In [51] the matrices A were computed for the simple space curve sin-
gularities classified by M. Giusti [74] except Z9 and Z10 and many of the
K-unimodal isolated singularities of complete intersection surfaces classified
by C. T. C. Wall [170]. The missing cases Z9 and Z10 were studied in [58] and
the case I1,0 was treated in [53].

P. Orlik and R. Randell [130] computed the integral monodromy for some
classes of weighted homogeneous singularities.

If Y = Cn+1 and f is a real analytic function, i.e. takes real values on
Rn+1 ⊂ Cn+1, then Gusein-Zade [84] showed that the integral monodromy is
the product of two involutions (see also [6]).
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3 Zeta Function

The zeta function of the monodromy is defined to be

ζ(t) :=
∏

q≥0

{det(id∗ − th∗;Hq
(X

δ
,C))}(−1)

q+1

.

The relation with the characteristic polynomial ∆(t) of the monodromy is

∆(t) := det(tid∗ − h∗) = t
µ

[

t− 1

t
ζ

(

1

t

)](−1)
n+1

.

The Lefschetz numbers are defined by

Λ
k

:= Λ(hk

∗) =
∑

q≥0

(−1)qTr[hk

∗;Hq
(X

δ
,C)].

We define rational numbers χm
by

Λ
k

=
∑

m|k

mχ
m
.

Explicitely, these numbers can be defined by Möbius inversion

χ
m

=
1

m





∑

k|m

µ

(

m

k

)

Λ
k



 ,

where µ( ) denotes the Möbius function. By A. Weil (cf. [125]) we have

ζ(t) =
∏

m≥1

(1 − t
m)−χm .

The following statements were explained to me by D. Zagier.

Proposition 3.1 (Zagier). (i) The numbers χ
m

are integers.

(ii) The following statements are equivalent:

(a) ∆(t) is a product of cyclotomic polynomials.

(b) χm
6= 0 for only finitely many m.

(c) The sequence (Λ
k
) is periodic.

Proof. (i) is proved by induction: Assume that χ
m
∈ Z for m ≤ `. Then

`
∏

m=1

(1 − t
m)−χm
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is a formal power series with integer coefficients which starts with 1. Since
ζ(t) is also a power series with integral coefficients, the same is true for

ζ(t)
∏

`

m=1
(1 − tm)−χm

=
∞
∏

m=`+1

(1 − t
m)−χm.

But this power series starts with 1 + χ
`+1t

`+1.

The proof of (ii) is done in several steps: The implication (a) ⇒ (b) is clear.
(b) ⇒ (c): Let χ

m
= 0 for all m which do not divide a number Q. Then

for positive integers d, r with 0 < r ≤ Q we have

Λ
dQ+r

=
∑

m|dQ+r

mχ
m

=
∑

m|r

mχ
m

= Λ
r
.

(c) ⇒ (a): Let the sequence (Λ
k
) be periodic of period Q. Let s

k
:= Tr hk

∗

and let p(t) := det(id∗ − th∗). Then

p(t) = exp(Tr(log(id∗ − th∗))) = exp

(

−

∞
∑

k=1

s
k

t
k

k

)

.

For the logarithmic derivative of p(t) we get from this

p
′(t)

p(t)
= −

∞
∑

k=1

s
k
t
k−1

.

Since s
k

is periodic of period Q, we get

p
′(t)

p(t)
= −

Q
∑

k=1

s
k
t
k−1(1 + t

Q + t
2Q + . . .)

= −

Q
∑

k=1

s
k

t
k−1

1 − tQ
=

q(t)

1 − tQ

for some polynomial q(t). But each zero of p(t) must be a simple pole of the
logarithmic derivative and hence a zero of 1 − tQ.

If (Y, 0) is smooth and f is singular, then by [1] Λ1 = 0. Lê [105] proved
that in this case there exists a characteristic diffeomorphism h without fixed
points. In a letter to A’Campo, P. Deligne showed that more generally in the
case when (Y, 0) is smooth, Λ

k
= 0 for 0 < k < mult(f) where mult(f) is the

multiplicity of f . G. G. Il’yuta [94] gave formulae expressing the Lefschetz
numbers in terms of cycles of the Coxeter-Dynkin diagram. In [52] the author
showed that TrC2 = (−1)r where r is the corank of f .
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Let π : ˜Y → Y be a resolution of Y and let ˜f := f ◦π be the composition.
We denote by ˜X0 the proper transform of X0 = f

−1(0). Let ˜f−1(0) = ˜X0 ∪
E1∪· · ·∪E

s
where E

i
is irreducible. We assume that the following conditions

are satisfied:

(1) π : ˜X0 → X0 is a resolution of X0.

(2) Each exceptional divisor E
i
is smooth and ˜f−1(0) has only normal cross-

ings.

Let m
i
be the order of the function ˜f along the divisor E

i
and let

E
′
i
:= E

i
\

(

⋃

j 6=i

E
j

)

∪ ˜X0.

Then we have the following famous theorem of A’Campo [3]:

Theorem 3.2 (A’Campo). Under the above assumptions, we have

ζ(t) =

s
∏

i=1

(1 − t
mi)−χ(E′

i)

where χ(E ′
i
) is the topological Euler characteristic of E ′

i
.

The theorem was formulated by A’Campo only for the case Y = Cn+1 but
it can be easily generalized to this more general situation (see e.g. [128]).
From Proposition 3.1 we see that A’Campo’s theorem implies Part (a) of the
Monodromy theorem. In [11] it is shown that Part (b) can also be derived
from that theorem.

A generalization of A’Campo’s theorem using partial resolutions was
given by Gusein-Zade, Luengo and Melle-Hernández [86].

If Y = Cn+1 and f is non-degenerate with respect to the Newton dia-
gram, then A. Varchenko [160] (and also independently F. Ehlers [66]) have
given a formula to compute ζ(t) from the Newton diagram. This formula was
generalized to the general case by M. Oka [128].

A. Campillo, F. Delgado and Gusein-Zade [85] have shown that for an
irreducible curve singularity, the zeta function ζ(t) coincides with the Poincaré
series P (t) of the natural filtration on the ring of functions of such a singularity
given by the order with respect to a uniformization.

Now suppose Y = Cn+1 and f is weighted homogeneous of weights
q0, . . . , qn and degree d. Here q0, . . . , qn are assumed to be coprime. Then
the geometric monodromy h : X1 → X1 can be described as follows [125]:

h(z0, . . . , zn
) = (e2πi/q0z0, . . . , e

2πi/qnz
n
).
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The monodromy operator h∗ is of order d. Milnor and P. Orlik [126] have
shown how to compute ζ(t) from the weights and the degree of f . Greuel and
H. Hamm [77] have given a more general formula for a weighted homogeneous
ICIS (Y, 0).

K. Saito [137] has shown that if Y = C3 then all the primitive d-th roots
of unity are eigenvalues of h∗.

Saito [138, 139] also introduced a duality between rational functions of
the form of the zeta function. If φ(t) is a rational function of the form

φ(t) =
∏

m|d

(1 − t
m)χm for χ

m
∈ Z and some d ∈ N,

then he defines

φ
∗(t) =

∏

k|d

(1 − t
k)−χd/k.

Let f be a function defining one of the 14 exceptional unimodal hypersurface
singularities in the sense of V. I. Arnold [9]. Arnold has observed a strange
duality between these singularities [8]. Saito has observed the following fact:
If ∆(t) is the characteristic polynomial of the monodromy of f then ∆∗(t) is
the characteristic polynomial of the monodromy of the dual singularity. The
author and C. T. C.Wall [65] have found an extension of Arnold’s strange
duality embracing also ICIS. The author [53] has shown that Saito’s duality
also holds for this extension and he has related it to polar duality and to a
duality of weight systems found by M. Kobayashi [54, 57].

If n = 2 and Y = C3 or (Y, 0) is a certain special ICIS, then it was shown
[56] that the Saito dual ∆∗(t) of the characteristic polynomial of the mon-
odromy is equal to the product of the Poincaré series P (t) of the coordinate
algebra and some rational function Or(t) depending only on the orbit invari-
ants of the natural C∗-action on the singularity. In the case when Y = Cn+1

and f is a Newton non-degenerate function, the author and Gusein-Zade [62]
showed that the same holds for the Saito dual of the inverse of the reduced
zeta function ˜ζ(t) (reduced means considering reduced homology). Finally, in
[63] this was generalized to the case when Y is a complete intersection given
as the zero set of functions f1, . . . , fk−1 and f = f

k
to the product of the Saito

duals of the inverse reduced zeta functions ˜ζ
j
(t) of the monodromy operators

of f
j

on f1 = . . . = f
j−1 = 0 for j = 1, . . . , k. J. Stevens [156] proved that this

result implies the theorem of Campillo, Delgado and Gusein-Zade [85].

Now let Y = Cn+1 and assume that f ∈ Z[x0, . . . , xn
]. For a prime

number p denote by Z
p

the p-adic integers. Consider the p-adic integral

Zp
(s) :=

∫

Z
n+1
p

|f(x)|s
p
|dx|
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for s ∈ C, Re(s) > 0, where |dx| denotes the Haar measure on Qn+1

p
normal-

ized in such a way that Zn+1

p
is of volume 1. This function is called the p-adic

Igusa zeta function. Now there is the following famous conjecture [93] (see
also [37]):

Conjecture 3.3 (Igusa’s monodromy conjecture). For almost all prime

numbers p, if s0 is a pole of Z
p
(s) then e

2πiRe(s0) is an eigenvalue of the

monodromy operator h∗ at some point of {f = 0}.

J. Denef and F. Loeser [38] defined a topological zeta function Ztop(t) gen-
eralizing Igusa’s zeta function. The analogous conjecture is stated for this
function. Loeser [113, 114], W. Veys [167], Artal-Bartolo, P. Cassou-Noguès,
Luengo and Melle-Hernández [15, 16] and B. Rodrigues and Veys [136] proved
various special cases of this conjecture. See [168] for an excellent survey on
this topic and the article of Artal-Bartolo, Luengo and Melle-Hernández in
this volume [17].

In [88] a motivic version of the zeta function of the monodromy is dis-
cussed and compared with the motivic zeta function of Denef and Loeser.

4 Spectrum

In the case (Y, 0) smooth, Steenbrink [153] showed that there exists a mixed
Hodge structure on the Milnor fibre. LetH = Hn(X

δ
,Z). Such a mixed Hodge

structure consists of an increasing weight filtration

0 = W−1 ⊂ W0 ⊂ · · · ⊂ W2n
= H ⊗ Q

of H ⊗ Q and a decreasing Hodge filtration

H ⊗ C = F
0 ⊃ F

1 ⊃ · · · ⊃ F
n ⊂ F

n+1 = 0.

It follows from a result of M. Saito [141] that in the general case, the ana-
logue in cohomology of the short exact sequence in §2 can be considered as a
sequence of mixed Hodge structures (see [64]).

The mixed Hodge structure is used to define the spectrum of a singularity.
The spectrum was defined by Steenbrink [153] and Arnold [10] in the case
when (Y, 0) is smooth and in [64] in the general case.

Definition 4.1. The spectrum Sp(f) of f is defined as follows. Let p ∈ Z,
0 ≤ p ≤ n. A rational number α ∈ Q with n−p−1 < α ≤ n−p is in Sp(f) if
and only if e2πiα is an eigenvalue of the semisimple part of h∗ on F p

H/F
p+1

H.
Here H = Hn(X

δ
,C) if Y = Cn+1 and H = H

n+1(Y
η
, X

δ
,C) in the general

case. The multiplicity of α is the dimension of the corresponding eigenspace.
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The spectrum is an unordered tuple of ν rational numbers α1, . . . , α
ν

which lie between −1 and n. We order these numbers as follows:

−1 < α1 ≤ α2 ≤ . . . ≤ α
ν
< n.

There is a symmetry property

αi
+ α

ν+1−i
= n− 1.

V.V. Goryunov [75] computed the spectra of the simple, uni- and bimodal
hypersurface singularities. Steenbrink [155] compiled tables of the spectra for
all K-unimodal ICIS. If Y = Cn+1 and f is Newton non-degenerate then the
spectrum can be computed from the Newton diagram, see [140, 165]. Other
methods to compute the spectrum in the case when (Y, 0) is smooth have
been given by Schulze and Steenbrink [149].

The most famous property of the spectrum is the semicontinuity conjec-
tured by Arnold [10] and proved by Steenbrink [154] for the case when (Y, 0)
smooth and the author and Steenbrink in the general case [64]. A weaker form
of this theorem has already been proved by Varchenko [164].

Theorem 4.2 (Semicontinuity theorem). The spectrum behaves semi-

continuously under deformation of the singularity in the following sense: If

f ′ (with ν ′ < ν) appears in the semi-universal deformation of f , then

α
i
≤ α

′
i
.

The variance of the spectrum measures the distribution of the spectral num-
bers with respect to the central point and is defined by

V =
1

ν

ν
∑

i=1

(

α
i
−
n− 1

2

)2

.

C. Hertling [92] proposed the following conjecture

Conjecture 4.3 (Hertling). If (Y, 0) is smooth (so ν = µ), then

V ≤
α

µ
− α1

12
.

One has equality if f is weighted homogeneous, as shown by A. Dimca [40]
and Hertling [92]. M. Saito [143] showed that Hertling’s conjecture holds for
all irreducible plane curve singularities. Th. Brélivet [24, 25] showed that the
conjecture holds for all curve singularities. Brélivet and Hertling have stated
more general conjectures involving higher moments [26].

Let Y = Cn+1. We shall now give several different interpretations of the
smallest exponent α1.
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Let ω be a holomorphic (n + 1)-form on Cn+1. For 0 < |t| < δ let η(t)
be a continuously varying homology class of dimension n on X

t
and consider

the function

I(t) =

∫

η(t)

ω

df
.

This function admits an asymptotic expansion as t tends to zero:

I(t) =
∑

α,q

1

q!
C

ω,η

α,q
t
α(log t)q

,

such that q ∈ Z, 0 ≤ q ≤ n, α ∈ Q, α > −1 and e
2πiα is an eigenvalue of the

semisimple part of the monodromy operator. By [162] we have

α1 = βC − 1 := min{α | ∃ω, η, q Cω,η

α,q
6= 0}.

The number βC is the complex singularity index (cf. [7], where in fact the
number n+1

2
− βC is called the complex singularity index). For a simple sin-

gularity in C3, one has βC = 1 + 1

N
where N is the Coxeter number of the

singularity (cf. [7]).
With the notations of §3, let k

i
be the multiplicity of π∗(dx0 ∧ . . .∧ dxn

)

along the divisor E
i
, i = 1, . . . , s. Let m0 and k0 be the order of ˜f and the

multiplicity of π∗(dx0∧ . . .∧dxn
) respectively along the divisor ˜X0. So m0 = 1

and k0 = 0. Let

λ := min

{

ki
+ 1

m
i

∣

∣

∣

∣

i = 0, . . . , s

}

.

K.-Ch. Lo [112] has shown that

βC ≥ λ.

T. Yano [172] and B. Lichtin [111] have shown that if λ < 1 then

βC = λ.

Varchenko [161] (see also [67, 166]) has shown that for a Newton non-dege-
nerate function, βC = 1/t0 where (t0, . . . , t0) is the intersection point of the
diagonal t 7→ (t, . . . , t) with the Newton diagram of f .

J. Kollar [97] has shown that λ is equal to the log canonical threshold.
Moreover, we have the following relations which were recently brought

back into attention in the framework of multiplier ideals (see e.g. [69]).
For a rational number α we define the following ideal A

α
in the ring O

Y,0

of analytic functions on (Y, 0):

A
α

:=

{

φ ∈ O
Y,0

∣

∣

∣

∣

inf
1≤i≤s

(

1 + ki
+ ν

i
(φ)

m
i

− 1

)

> α

}

where ν
i
(φ) denotes the order of φ along the divisor E

i
. This is a multiplier

ideal in the sense of Y.-T. Siu and A. Nadel (see [69]).
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Definition 4.4. We define a sequence of numbers

ξ0 = 0 < ξ1 < ξ2 < . . .

as follows: A
α

= A
ξi

for α ∈ [ξ
i
, ξ

i+1) and A
ξi+1

6= A
ξi

for i = 0, 1, . . .. These
numbers are called jumping numbers.

These numbers first appeared implicitly in a paper of A. Libgober [110]. The
above definition is due to Loeser and M. Vaquié [115, 159].

Varchenko [163] (see also [31]) proved the following statement: If
α ∈ (−1, 0), then

α ∈ Sp(f) ⇔ α + 1 = ξ
i
for some i.

M. Saito [142] showed that the Bernstein-Sato polynomial b
f
(s) (see §1) has

roots in [0, 1) which do not come from the spectrum of f .

5 Monodromy and the Topology of the Sin-

gularity

Let B
ε

be a closed ball as in §1 and let K := f
−1(0)∩ ∂B

ε
∩ Y be the link of

the singularity (X0, 0).
First assume that Y = Cn+1. Milnor [125] has shown that the manifold

K is a homology sphere (and when n 6= 2 actually a topological sphere) if
and only if the integer

∆(1) = det(id∗ − h∗)

is equal to ±1. Let n 6= 2 and assume that K is a topological sphere. The dif-
ferentiable structure of K is completely determined by the Kervaire invariant
c(X

δ
) ∈ Z2 if n is odd, or by the signature of the intersection matrix A if n is

even (cf. [125]). If n is odd, then by a theorem of J. Levine [108] the Kervaire
invariant is given by

c(X
δ
) =

{

0 if ∆(−1) ≡ ±1 (mod 8),
1 if ∆(−1) ≡ ±3 (mod 8).

If n is even and f is weighted homogeneous, then the signature of the in-
tersection matrix A is determined by the eigenvalues of the monodromy, see
[152]. Hence in many cases the complex monodromy operator determines the
differentiable structure of K.

In fact it is shown in [125] that K is (n− 2)-connected, that the rank of
H

n−1(K) is equal to the dimension of the eigenspace of h∗ corresponding to
the eigenvalue 1, and that, if the rank is equal to zero, the order of H

n−1(K)
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is equal to |∆(1)|. Here we use reduced homology if n = 1. If f is weighted
homogeneous, a formula for the rank of H

n−1(K) and for ∆(1) in terms of
weights and degree is given in [126].

If n = 1, Durfee [46] relates the topology of a branched cyclic cover of
the link K to the characteristic polynomial of the monodromy. B. G. Cooper
[34] has calculated the homology of the link K for some special weighted
homogeneous polynomials f .

Let C be the matrix of h∗ with respect to a basis of H
n
(X

δ
,C) and let I

be the µ × µ identity matrix. In the case when f is weighted homogeneous,
Orlik [129] has stated the following conjecture:

Conjecture 5.1 (Orlik). The matrix C can be diagonalized over the integers,

i.e. there exist unimodular matrices U(t) and V (t) with entries in the ring Z[t]
so that

U(t)(tI − C)V (t) = diag(m1(t), . . . , mµ
(t))

where m
i
(t) divides m

i+1(t) for i = 1, . . . , µ− 1.

Since the ring C[t] is a principal ideal domain, such matrices exist over C[t].
The conjecture implies that

H
n−1(K) = Z

m1(1) ⊕ . . .⊕ Z
mµ(1)

where Z1 is the trivial group and Z0 is the infinite cyclic group.
The conjecture holds for f weighted homogeneous and n = 2 as follows

from [131].
Sometimes the conjecture is extended to germs f with finite monodromy.

Then the following is known about the more general conjecture. From [2] one
can derive that Orlik’s conjecture is true for irreducible plane curve singular-
ities. F. Michel and C. Weber [123, 124] have shown that Orlik’s conjecture
is false for plane curve singularities with more than one branch.

Let n = 2 and f be weighted homogeneous with weights q1, q2, q3 and
degree d. Then Y. Xu and S.-T. Yau [171] have shown that the characteristic
polynomial ∆(t) of the monodromy and the fundamental group π1(K) of
the link determine the embedded topological type of (X0, 0). Let K be in
addition a rational homology sphere. Then R. Mendris and A. Némethi [122]
have observed that it follows from [56] that ∆(t) is already determined by
π1(K). Define

R := d− q1 − q2 − q3.

Némethi and L. I. Nicolaescu [127] have derived from [56] that

∆(t)

∆(1)
= 1 +

µ

2
(t− 1) + . . . and

∆∗(t)

∆∗(1)
= 1 +

R

2
(1 − est)(t− 1) + . . .
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where est is Batyrev’s stringy Euler characteristic of (X0, 0) (cf. [19]) as gen-
eralized by Veys in [169].

Now let Y = Cn+1 and let f be again general. The matrix V of §2 is
the matrix of the (integral) Seifert form of the singularity (X0, 0). If n ≥ 3
then results of M. Kervaire [96] and J. Levine [109] show that the Seifert form
determines the (embedded) topological type of the singularity, see also [45]. If
n = 1 and f defines an irreducible curve singularity, then it follows from [32]
and [173] that the integral monodromy and even the rational monodromy
determines the topology of the singularity. M.-C. Grima [78] has given ex-
amples of plane curve singularities with two branches of different topological
types with the same rational monodromy, but different integral monodromy.
Ph. Du Bois and Michel [42, 44] have shown that the integral Seifert form
does not always determine the topology of the singularity in the case n = 1.
Using suspensions of the examples of Du Bois and Michel, Artal-Bartolo [13]
has shown that the same applies to the case n = 2.

Let (Y, 0) be a weighted homogeneous ICIS and let f be weighted homo-
geneous. Let L := ∂B

ε
∩ Y . Dimca [39] has shown that for n ≥ 2 one has the

following formula for the Betti numbers of L and K:

b
n+1(L) + b

n
(K) = dim ker(Id∗ − h∗).

Hamm [90] computed the characteristic polynomial of the monodromy for
some ICIS which are generalizations of the Brieskorn-Pham singularities, the
Brieskorn-Hamm-Pham singularities. The homology torsion of the link of a
Brieskorn-Hamm-Pham singularity was computed by Randell [134].
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[21] Bey, C.H.: Sur l’irréductibilité de la monodromie locale; application
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ture Notes in Math., Vol. 163, Springer-Verlag, Berlin etc., 1970.

[36] Deligne, P.; Katz, N.: Groupes de monodromie en géométrie algébrique
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intégrales. Bull. Soc. Math. France 93, 333–367 (1965).



Monodromy 153.

[133] Picard, E.; Simart, S.: Traité des fonctions algébriques de deux variables.
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Abstract

Although the problem of the existence of a resolution of singularities
in characteristic zero was already proved by Hironaka in the 1960s and
although algorithmic proofs of it have been given independently by the
groups of Bierstone and Milman and of Encinas and Villamayor in the
early 1990s, the explicit construction of a resolution of singularities
of a given variety is still a very complicated computational task. In
this article, we would like to outline the algorithmic approach of Enci-
nas and Villamayor and simultaneously discuss the practical problems
connected to the task of implementing the algorithm.

Introduction

The problem of existence and construction of a resolution of singularities is
one of the central tasks in algebraic geometry. In its shortest formulation it can
be stated as: Given a variety X over a field K, a resolution of singularities of
X is a proper birational morphism π : Y −→ X such that Y is a non-singular
variety.

Historically, a question of this type has first been considered in the second
half of the 19th century – in the context of curves over the field of complex
numbers. It was already a very active area of research at that time with a
large number of contributions (of varying extent of rigor) and eventually lead
to a proof of existence of resolution of singularities in this special situation
at the end of the century. Although it does not seem feasable to even give
a nearly complete list of important contributions to the field during that
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period, there are certain names which have to be mentioned in this context,
e.g. L. Kronecker, M. Noether and A. Brill. After the case of curves over
the complex numbers had been proved, the task was generalized slightly by
passing from curves to surfaces. To this extended task, many contributions
were made by the italian school, among others by O. Chisini, G. Albanese
and F. Severi; but many of these treatments lacked the necessary rigor in
the proofs. Thus the first mathematically rigorous proof of the existence of
resolution of singularities for surfaces over the field C was presented by R.J.
Walker in 1935 ([13]) by patching the local arguments of the article of H.W.
Jung dating from 1908 ([11]) in a suitable way; this article of Jung had locally
studied surfaces in 3–dimensional space by means of a projection to the plane,
proving that a resolution of singularities exists locally in the given setting.

All of these early contributions to the task of resolving singularities re-
lied on analytic arguments. It was not until the early 1930s that a more
algebraic approach to dealing with geometric problems became established
which allowed a more systematic treatment. This change of point of view and
methods manifests itself in the groundbreaking work of O. Zariski, e.g. in his
1939 proof of the existence of resolution of singularities of surfaces over an
algebraically closed field of characteristic zero ([14]) and the proof for the
three-dimensional case in 1944 ([15]). It also lead the way to considering the
problem in full generality, i.e. without restriction to the dimension of X or
in arbitrary characteristic. In positive characteristic, only partial results are
known; the general case is still open ([1], [5]). In characteristic zero, however,
the existence of resolution of singularities in the general case has been proved
by H. Hironaka in his monumental article in 1964 ([10]). In fact, he was the
first one to consider the non-hypersurface case and introduced the concept
of a standard basis and a generalization of the order of a hypersurface at a
point as tool for achieving his goal of proving the general case. But his proof
is highly non-constructive, which led to an intensive interest in the search
for a constructive approach, whether it is the quest for fast algorithms in
special cases like the toric one or the task of finding an algorithm for the
general case. To the latter problem, important contributions have been made
independently by the groups of E. Bierstone and P. Milman and of O. Vil-
lamayor and S. Encinas since the late 1980s, which eventually gave rise to
implementations in recent years.

In this article, we would like to give a brief overview of the constructive
approach of Villamayor and Encinas and of the computational tasks arising
when implementing the algorithm. To this end, it is important to understand
that this algorithm actually considers the more general set-up, not only con-
structing a resolution, but a strong factorizing desingulariztion, from which
principalization of ideals and embedded resolution of singularities can be ob-
tained as corollaries – as well as resolution of singularities without reference
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to an embedding. Since the problem we shall be considering in this article
is embedded resolution of singularities, we need to state this task in a more
detailed way: Given a subscheme X of a smooth algebraic scheme W, the task
is to construct a sequence of blowing ups of W at smooth centers such that

– the exceptional divisors in each step are normal crossing,
– the respective centers are normal crossing with them,
– the strict transform ofX under the sequence of blowing ups is eventually

smooth and normal crossing with the exceptional divisors and
– the blowing ups have only altered W in the points of Sing(X).

As the resolution process consists of a sequence of blowing ups, the first issue
which we consider is the blowing up (in section 1), which is a very well known
type of a birational map in algebraic geometry. Therefore the main purpose
of this section is to fix notation and explain implementational aspects.
In the following section, the notions of the b-singular locus and of basic ob-
jects are introduced. These are Encinas’ and Villamayor’s way of describing
the collection of data that is used to describe the current situation at each
step of the resolution process, including appropriate information on the his-
tory of the process.
After treating the special case of monomial basic objects separately in section
3, the algorithm for finding appropriate centers is then described and illus-
trated by a detailed example in section4.
The final section 5 then briefly outlines how to use the implemented algo-
rithm for some applications focusing on the problem of how to represent the
final result of the resolution algorithm and how to extract information from
it. This is again illustrated by means of the example of the preceding section.
The authors are supported in part by the DFG-Schwerpunkt “Globale Meth-
oden in der komplexen Geometrie”.

1 Blowing Up

As the main goal of this article is to explain how to construct a resolution of
singularities algorithmically and how to compute this in practice, we start by
explaining the main ingredients to the algorithms. The first one to consider
is the blowing up at a given center. After briefly recalling the notion of the
blowing up of a variety and listing some properties, we explain how to compute
it by means of Gröbner bases techniques. We refer to [8] for more details on
blowing ups and to [6] for the computational details.

Definition 1.1. Let W be an algebraic variety, C ⊆W a closed sub–variety
defined by the ideal sheaf K ⊆ O

W
. The blowing up of W with center C is

π : ˜W := Proj
(
⊕

n≥0
K
n

)

→ W.
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Theorem 1.2. (Universal property of blowing up): Let f : Y → W be a mor-

phism such that KO
Y

is locally principal. Then there is a unique morphism

g : Y → ˜W such that f = π ◦ g.

Remark 1.3. The blowing up with center C has the following properties:

(1) ˜W is an algebraic variety.

(2) π is proper.

(3) π induces an isomorphism over W � C

(4) KOf
W

is a locally principal ideal sheaf.

(5) If W is projective then ˜W is projective

In the context of this article, we only consider blowing ups at non-singular
centers, as these are the only ones appearing in the resolution process; more
precisely, we will later impose further conditions on the choice of the center
leading to the notion of a permissible center:

Definition 1.4. Let W be an algebraic variety.

(1) A subscheme E ⊂W is called normal crossing at a point p ∈ E if p is a
regular point ofW and there is a regular system of parameters f1, . . . , fk

for p ∈W such that E is given by the equation f1 · . . . · f� = 0 for some
1 ≤ � ≤ k on a Zariski neighbourhood of p.

(2) Let a subscheme E ⊂W be normal crossing at all points of E. Then
a regular closed subscheme Y ⊂W is called a permissible center w.r.t.
W and E, if Y has normal crossings with E.

For dealing with explicit examples, it is more convenient to pass to a covering
by affine charts. In particular, the calculation of the blowing up can easily
be formulated in the affine case in a way which is also accessible to direct
implementation:

Remark 1.5. Let U ⊂W be an affine open subset and and denote Γ(U,O
W

)
by A and Γ(U,K) = 〈f1, . . . , fm〉 ⊆ A by K. Then the blowing up of U at the
center C ∩ U is

π
−1(U) = Proj

(

⊕

n≥0

K
n

)

=

m
⋃

i=1

Spec A

[

f1

f
i

, . . . ,
fm

f
i

]

.

Spec A
[

f1

fi
, . . . ,

fm

fi

]

is called the i–th affine chart of the blowing up.

To compute the blowing up explicitly, we consider the graded A-algebra
homorphism Φ : A[y1, . . . , ym]→

⊕

n≥0
K
n
t
n
⊆ A[t] defined by Φ(y

i
) = tf

i
.
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Then
⊕

n≥0
K
n is obviously isomorphic to A[y1, . . . , ym]/Ker(Φ) and we can

describe the situation by means of the embedding

π
−1(U) ∼= V (Ker(Φ)) ⊆ Spec(A)× Pm−1

.

Now let X = V (J) ⊆W be a subvariety defined by the ideal sheaf1 J ⊆ OW .
For describing how X is transformed under the blow-up, the following notions
are used:

Definition 1.6. (1) The total transform of X, π∗(X), is the subvariety of
˜W defined by π∗(J) = JOf

W
.

(2) The strict transform of X, ˜X is the Zariski closure of π−1(X � V (K))

in ˜W . Its ideal sheaf is ˜J := JOf
W

: KO∞
f
W

.

(3) The exceptional hypersurface E is the reduced subvariety of ˜W defined
by KOf

W
; the corresponding ideal sheaf is denoted by I(E)

(4) The weak transform of X, X, is defined by the ideal sheaf J satisfying
the properties JOf

W
= I(E)cJ and I(E) � J

Remark 1.7. The strict transform ˜X is the blowing up of X in the subvariety
defined by KO

X
,

˜X = Proj
(
⊕

n≥0
(KO

X
)n
)

.

Example 1.8. To illustrate the difference between the weak and the strict
transform under a blow-up, we will now consider the blow-up of the affine
variety defined by the ideal J = 〈xy, x3 + y

3 + z
3
〉 ⊂ C[x, y, z] = O

W
at the

origin, that is at the center C defined by K = 〈x, y, z〉.

Then ˜W ⊂ A3

C
× P2

C
is the set {(x, y, z; u : v : w) ∈ A3

C
× P2

C
| uy − xv =

uz − xw = vz − yw = 0} which can be covered by the three affine charts
corresponding to the open sets D(u), D(v) and D(w). In each of these, the
above equations imply that the affine chart looks again like an A3

C
.

Chart 1: u �= 0.

I(H) = 〈x〉 ,

π
∗(J) = 〈x

2
v, x

3 + x
3
v

3 + x
3
w

3
〉 ⊂ C [x, v, w] ,

˜J = 〈v, 1 + w
3
〉 ,

J = 〈v, x+ xv
3 + xw

3
〉 = 〈v, 1 + w

3
〉 ∩ 〈v, x〉 .

Chart 2: v �= 0.

1Here V (J) is considered with the structure sheaf defined by OW /J , i.e. not necessarily
reduced.
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By symmetry in x and y in the generators of the original ideal, the equations

here are the same as in chart 1 after exchanging x by y and v by u.

Chart 3: w �= 0.

I(H) = 〈z〉 ,

π∗(J) = 〈uvz
2
, u

3
z

3 + v
3
z

3 + z
3
〉 ⊂ C [u, v, z] ,

˜J = 〈uv, u
3 + v

3 + 1〉 = 〈u, 1 + v
3
〉 ∩ 〈v, 1 + u

3
〉 ,

J = 〈uv, u
3
z + v

3
z + z〉 = 〈u, 1 + v

3
〉 ∩ 〈u, z〉 ∩ 〈v, z〉 .

In particular, we see that the strict transform does not contain any compo-

nents which are contained in the hypersurface H, whereas in the weak trans-

form all of those components are present except the hypersurface H itself.

Computational Remark 1.9. In example 1.8, the explicit calculation of the
blowing up was rather straight forward due to the simplicity of the generators
of the ideal K. In general, however, generators for the ideal of the center (in
an affine chart) are not of such a simple structure and hence the preimage
computation of remark 1.5 for the blowing up, which is a Gröbner basis
calculation involving the original variables and additionally the new variable
t and one new variable for each generator of K, can become quite expensive.
In practice, this problem can be tackled in two ways. First of all, blowing
up at a center consisting of several disjoint components may be implemented
as a single blowing up or alternatively as a sequence of blowing ups, each
of which involving just one of the components, because outside the center
the blowing up is an isomorphism as we already mentioned; the latter leads
to fewer and simpler generators for the centers and turns out to be faster
than the other variant, although it produces more affine charts. The other
improvement, that can be implemented, is that instead of using the given
generators of the center, it is possible to drop redundant generators before
continuing.

After computing the blowing up of the ambient space W , determining
the total, weak and strict transform of subvarieties does not pose any addi-
tional difficulties. The only further issue that has to be considered is that the
calculations of the weak and strict transform are carried out by means of iter-
ated ideal quotients which are in turn Gröbner basis calculations. Therefore
it is again vital for the efficiency of an implementation that the number of
variables is kept as small as possible.

2 The b-Singular Locus and Basic Objects

After outlining in the previous section that the blowing up itself is not too
difficult to handle algorithmically, we now turn our focus to the heart of



Algorithmic Resolution of Singularities 163.

the algorithm, the choice of the center. Before we can describe how it is
constructed in section 4, we need some preparations including the notions
of the b-singular locus and of basic objects in this section and the separate
treatment of a special case in the following section.

In the simplest case, the case of resolving singularities of plane curves,
it is a well known fact that the centers are always finite sets of points and
the choice of the respective points is governed by an invariant whose main
ingredient is the order of the power series locally generating the ideal of the
curve. In the general case, the first important ingredient to the governing
invariant is a generalization of this, the order of an ideal at a point:

Definition 2.1. Let W be a non-singular algebraic variety, J ⊆ O
W

an ideal
sheaf and w ∈W . The order at w with respect to J is defined as

v
J
(w) = sup{m | J

w
⊆ m

m

W,w
}.

The function v
J

: W → N is upper semi–continuous2

If X ⊆ W is the subvariety defined by J , often the notation v
X

is used
instead of v

J
.

Computing the order v
J
(w) at a point w ∈W can be done using the following

construction: Let A = k[[x1, . . . , xn]] be the power series ring and let J =
〈f1, . . . , fr〉 ⊆ A be an ideal. We set

̂∆(J) :=

〈

f1, . . . , fr,

{

∂fi

∂x
j

}

i,j

〉

.

It is not difficult to prove that the definition of ̂∆(J) neither depends on the
choice of generators of J nor on the choice of regular parameters of A. Its
properties and its relation to the order at a point are outlined by the following
propositions:

Proposition 2.2. Let W be a non-singular algebraic variety, J ⊆ O
W

an ideal sheaf. Then there exists an ideal sheaf ∆(J) ⊆ O
W

such that

∆(J) ̂O
W,w

= ̂∆(J ̂O
W,w

) for all w ∈W .

See [4] for a proof. Defining inductively ∆0(J) = J and ∆r(J) = ∆(∆r−1(J)),
it is then easy to see that

Lemma 2.3. (1) v
J
(w) = b > 0 if and only if v∆(J)(w) = b− 1.

(2) v
J
(w) ≥ b > 0 if and only if w ∈ V (∆b−1(J)).

2To be more precise, it is Zariski upper-semicontinuous and infinitessimally upper-
semincontinuous; in particular, it can only stay constant or drop upon blowing up, but
never increase.
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On the basis of these observations, we can now describe the b-singular locus
of J , i.e. the set of points where the order is at least b:

Sing
b
(J) := {w ∈W | v

J
(w) ≥ b} = V (∆b−1(J)).

Computational Remark 2.4. In practice, it is, of course, not feasible to
compute ̂∆(J) at each point w ∈ W separately. Passing to an affine covering,
we can, however, obtain the desired result as follows: Let W = V (g1, . . . , gr)
be a smooth affine algebraic variety and J = 〈f1, . . . , fs〉 ⊆ OW an ideal.

If r = 0, i.e. W is an affine space, the calculation can be performed by
directly applying the definition:

∆(J) =

〈

f1, . . . , fr ,

{

∂fi

∂x
j

}

i,j

〉

.

In the general case, the difficulty arises that we have to determine a system
which induces a local system of parameters at each point w. To this end, we
use the fact that W is smooth; more precisely, let m := n − dim(W ) and L

be the set of m ×m submatrices of the Jacobian matrix of (g1, . . . , gr) with
non-vanishing determinant. For M ∈ L let r(M) (resp. c(M)) be the set of
row indices (resp. column indices) of the Jacobian matrix defining M . Let
A(M) = (A

ij
(M)) be defined by A(M) ·M = det(M) · E

m
. On the open set

defined by det(M) �= 0 in W we can use {x
i
}
i�∈r(M) as a regular system of

parameters. There we can hence compute the respective partial derivatives
and define the ideal ∆(J,M)

∆(J,M) :=
⎛

⎜

⎝
J +

〈{

det(M)
∂f

i

∂x
j

−

∑

k∈r(M)

l∈c(M)

∂g
l

∂x
j

A
lk

(M)
∂fi

∂x
k

}

i≤j≤s

j /∈r(M)

〉

⎞

⎟

⎠
: det(M)∞.

Outside of V (det(M)) this ideal coincides with ∆(J) as can easily be checked
by direct computation; the saturation, on the other hand, enables us to re-
move all components which are contained in V (det(M)). Hence ∆(J) can be
obtained by computing the intersection of all ∆(J,M) where M ∈ L:

∆(J) =
⋂

M∈L

∆(J,M).

Remark 2.5. The notion of the b-singular locus, as it is defined above, ap-
prears in the algorithmic approach of Villamayor and Encinas, which we follow
in this article, but not in the approach of Bierstone and Milman. In the latter
algorithm, the Hilbert-Samuel function and a slightly different notion of an
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order are used in its place. More precisely, they use a particular choice of
the local system of parameters, imposing the condition that it contains the
local generators of all exceptional hypersurfaces meeting this point; instead
of considering the ideal generated by the generators of the ideal and their
partial derivatives w.r.t. each of the elements of the local system of parame-
ters, they then use x

i
·
∂fj

∂xi
instead of

∂fj

∂xi
whenever x

i
corresponds to one of

the exceptional hypersurfaces.

On the other hand, the b-singular locus of a variety X is not the only piece
of data that has influence on the resolution process. If exceptional divisors
are present, these need to be taken into account in a suitable way as well. To
this end, all necessary data is collected into the notion of a basic object:

Definition 2.6. Let b be a positive integer, W a pure-dimensional smooth
algebraic variety of dimension d, X ⊆W a subvariety. Let E = {H1, . . . , Hk

}

be an ordered set of normal crossing hypersurfaces in W , E
bad
⊆ E a subset.3

The tuple B = (W,X, b, E,E
bad

) is called a (d–dimensional) basic object.
B is called monomial, if I(X) =

∏

H∈E

I(H)a(H).

Consequently, the task of resolution of singularities needs to be reformulated
in terms of resolution of basic objects. To this end, we first need to define
how a basic object is transformed under a permissible blow-up:

Definition 2.7. Let B = (W,X, b, E,E
bad

) be a basic object, J = I(X), and
E = {H1, . . . , Hr

}. Let Y ⊆W be a smooth closed subvariety which is per-
missible w.r.t. W and E and which satisfies Y ⊆ Sing

b
(B) := Sing

b
(X). Then

the blowing up π : ˜B → B of the basic object B at the center Y is induced by
the blowing up π : ˜W → W of W at Y (which gives rise to a new exceptional
divisor H) in the following way:

Because Y ⊆ Sing
b
(X), we may now consider JOf

W
= I(H)b ˜J for a suit-

able ideal ˜J ⊂ Of
W

, the weak transform of J under the blowing up. De-

noting by { ˜H1, . . . ,
˜H
r
} the set of strict transforms of the H

i
, we define

˜E = { ˜H1, . . . ,
˜H
r
, H}. Then ˜B = (˜W, ˜X, b, ˜E, ˜E

bad
), where ˜X is the alge-

braic variety defined by ˜J . The last piece of data which still needs to be
specified is ˜E

bad
; we postpone this to the following sections 3 and 4, as it is

rather technical and will not be needed any earlier.

3The role of the subset Ebad in the resolution process is rather technical. As the con-
struction of the center involves a induction on the dimension of the ambient space and
hence the construction of lower dimensional auxilliary objects, Ebad is used to indicate
those among the execeptional divisors which need to be taken into account before the
subsequent descent in dimension.
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Definition 2.8. A resolution of the singularities of a basic object B is a
sequence of blowing ups

B(n)
πn
−→ B(n− 1)→ · · · → B(1)

π1

−→ B,

where the B(i) = (W (i), X(i), b, E(i), E
bad

(i)) are basic objects and

π
i
: W (i)→W (i− 1)

blowing ups at permissible centers Y
i
⊆ Sing

b
(X(i− 1)), such that

(a) Sing
b
(X(n), b) = ∅

(b) W (n) \
⋃

H∈E(n)
H ∼= W \ Sing

b
(X)

(c) X(n) has normal crossings with E(n).

Example 2.9. Consider the basic object B = (C2
, V (x3

− y
5), 3, ∅, ∅) and

let π : W (1) → C2 = W be the blowing up of C2 at 0. Denoting by X(1)
the strict transform of X = V (x3

− y
5) and by H the exceptional divisor, we

obtain the following resolution of singularities of B:

B(1) = (W (1), X(1), 3, {H}, {H})→ B.

Here it is important to observe that Sing
3
(B(1)) = ∅ and B(1) is resolved,

although X(1) still has a singularity at the origin which it is a cusp, i.e. of
order 2.

The key point to the whole resolution process, the choice of the suitable cen-
ters, is governed by an invariant f(W,X,b,E,Ebad) : X → I assigning to each point
of X a value in a totally ordered set I. As the maximal locus of this invariant
is determining the upcoming center and as the decrease of its maximal value
under blowing up is the measure for the progress in the resolution process, the
invariant has to be Zariski upper semicontinuous as well as infinitessimally
upper semicontinuous. In the general case, the construction of this invariant
it rather complicated and involves an iterated descent in dimension each giv-
ing rise to a new auxilliary basic object. The details of this construction are
outlined in section 4, following the algorithmic approach of Villamayor and
Encinas. One special case, however, has to be treated separately, the mono-
mial case, because in this situation the general invariant does not provide a
suitable approach.

Remark 2.10. In the algorithmic approach of Bierstone and Milman resp.
the one of Wlodarczyk a similar collection of data is used, which Wlodarczyk
calls a marked ideal; it contains information on the ambient space, the ideal
itself, the exceptional divisors and an integer used in a way similar to the b in a
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basic object. Although the Bierstone-Milman approach uses the strict instead
of the weak transform, the way in which the invariant is constructed (including
the descent in dimension) also follows the same type of main ideas which will
be outlined for Villamayor’s construction in the subsequent sections. This
reflects the fact that all of these approaches have their roots in the non-
constructive proof of Hironaka; the subtle but important differences arise
from the different approaches to filling in the constructive details.
As the main goal of this article is to explain a construction of resolution of
singularities and the practical problems arising in its implementation, the
simultaneous treatment of the approaches of Villamayor and Encinas and of
Bierstone and Milman is beyond the scope of this article and we hence focus
on one of the two, the one of Villamayor and Encinas.

3 The Monomial Case

Before turning to the general case, we still need to deal with one special
situation separately, the case of a monomial basic object:

Let B = (W,X, b, E,E
bad

) be a monomial basic object where E =
{H1, . . . , Hr

}, I(X) =
∏

r

i=1
I(H

i
)ai . We define

fB : X −→ Z#E+2

x �−→ (−p(x), w(x), i(x))

where p(x), w(x) and i(x) are defined by

p(x) = min

{

q

∣

∣

∣

∣

∣

x ∈ H
i1
∩ . . . ∩H

iq
and

q
∑

j=1

a
ij
≥ b

}

w(x) = max

⎧

⎨

⎩

p(x)
∑

j=1

a
ij

∣

∣

∣

∣

∣

∣

x ∈ H
i1
∩ . . . ∩H

ip(x)
,

p(x)
∑

j=1

a
ij
≥ b

⎫

⎬

⎭

i(x) = max

⎧

⎨

⎩

(i1, . . . , ip(x))

∣

∣

∣

∣

∣

∣

i1 < . . . < i
p(x),

x ∈ H
i1
∩ . . . ∩H

ip(x)

,

p(x)
∑

j=1

a
ij
≥ b

⎫

⎬

⎭

Remark 3.1. At this point, it is important to observe that in the monomial
case the subset E

bad
of E is not considered in any way.

Example 3.2. As an example for the monomial case, let us consider the
problem of resolving the basic object

B = (C2
, V (x2

y
2), 2, {V (x), V (y)}, ∅).
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By direct calculation, we can check that along the exceptional divisors the
value of p is −1 and the one of w is 2 at all points. Therefore the choice of
the upcoming center has to be made on the basis of the last entry i which
has the value (2) for points on V (y) and (1) on V (x). This leads to the center
V (y) with invariant (−1, 2, (2)).

After one blowing up at this center, the transformed object is

˜B = (C2
, V (x2), 2, {V (x), ∅, V (y)}, ∅).

By the same direct calculation as before, the subsequent center is now V (x)
with invariant value (−1, 2, (1)). After this second blowing up, the object is
clearly resolved.

4 The Tower of a Basic Object

In the general case, the governing invariant of the resolution algorithm is
constructed inductively by means of a descent in dimension. Therefore, we
will first define the respective ’fragment’ of the invariant corresponding to a
basic object and then explain how an auxilliary basic object is constructed
whose ambient space is of smaller dimension. Iterating this process, we obtain
a tower of basic objects and then construct the invariant by concatenating
the ’fragments’ of the invariant corresponding to the objects in the tower.

Given such a tower of basic objects, we then need to define how the tower
is transformed under a blow-up and how the invariant is constructed for the
transformed tower.

Construction 4.1 (Building the Tower). To define the ’fragments’ of the
invariant, let B = (W,X, b, E,E

bad
) be a basic object and define

fB : X → Z2 by f
B
(x) = (v

X
(x), n

x
(E))

where nx(E) = #{H ∈ E
bad
| x ∈ H}.

For a given basic object B = (W,X, b, E,E
bad

), which we want to resolve,
we now construct locally in the neighbourhood of every point w ∈ W a tower
of lower dimensional basic objects. If the dimension of W is one or if B is
monomial then the tower is T0(B) = {B}.

Otherwise, let Y = {x ∈ X | (v
X

(x), n
x
(E)) maximal } and consider two

cases separately: If dim(Y ) = dim(W ) − 1, denote the reduced variety as-
sociated to the top-dimensional part of Y by Y

eq
and define the tower as

T0(B) = {B,B
aux
} where B

aux
is the auxilliary basic object of the form
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(Y
eq
, Y

eq
, 1, ∅, ∅).4 If this is not the case, set E

bad
= {H1, . . . , Hs

}
5 and de-

fine X ′
⊆W by

b
′ = max{v

X
(x) | x ∈ X}

m = max{n
x
(E) | x ∈ X, v

X
(x) = b

′
}

I(X ′) = I(X) + (
∏

i1<···<im

m
∑

j=1

I(H
ij
))b

′

E
′ = E � E

bad

Choose U ⊆ W open and a smooth hypersurface Z ⊆ U (a hypersurface of
maximal contact) such that

• Z ⊇ U ∩ {x ∈ X | (v
X

(x), n
x
(E) = (b′, m)}

• Z intersects all H ∈ E ′ transversally.

• E
′
∩ Z := {H ∩ Z | H ∈ E ′

} have normal crossings.

For every w ∈ W , such an open subset U and a hypersurface Z satisfying
the above conditions exists (see [4]). To simplify the following notations, we
assume U = W .6 The coefficient ideal of X is defined (locally) as

CoeffZ(I(X ′)) =
b
′−1
∑

i=0

(∆i(I(X ′))O
Z
)

b′!

b′−i .

Let C ⊆ Z be defined by Coeff
Z
(I(X ′)) ⊆ O

Z
, then the first auxiliary object

is B
Z

:= (Z,C, b′!, E, ∅). Note that Sing
b
′(X ′) = Sing

b
′!(C).

At the beginning of the resolution process, we define the tower of the
basic object B inductively by

T0(B) = {B} ∪ T0(BZ
),

4Here, it is important to note that this auxilliary basic object is only introduced to also
include this special case into the general way of expressing the construction of the center.
The top-dimensional components of the locus of maximal invariant are hypersurfaces in W

in this case; it can be checked directly (see [4]) that Yeq consists of smooth hypersurfaces
which do not intersect. These form the upcoming center which is needed in the algorithm
to allow it to proceed in the usual way afterwards.

5If the tower is being constructed for the very first time, the set Ebad needs to be
initialized and is set to contain all elements of E. If a tower has to be computed during
the resolution process, the appropriate changes to the set Ebad are explained at respective
steps in the algorithm.

6Actually, the fact that these constructions need to be performed in an open subset
leads to the notion of a general basic object, a generalization of basic objects. But this is
a rather technical concept which we would lead beyond the scope of this short article. In
particular, it is not contributing to the general ideas behind the resolution process.
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where the lower index 0 indicates that we have not performed any blowing
up yet. Let T0(B) = {B[0]

, . . . , B
[e]
} be the tower in the neighbourhood of a

point w ∈W . The invariant vector at w is then constructed as

inv(0)(w) = (f
B

[0](w), . . . , f
B

[e](w)).

Computational Remark 4.2. In practice, it is clearly not feasable to cal-
culate the value of the invariant at each point w ∈ W separately by a local
construction. But this is not necessary for determining the center anyway,
since the center is given by the locus of maximal value. It is therefore suffi-
cient to calculate only the maximal value and its locus – of course iteratively
passing from left to right through the invariant as the comparison is done lex-
icographically. The calculation of the b′-singular locus follows along the lines
of construction 2.4; the calculation of the locus of maximal n

x
(E) (inside the

b′-singular locus) is only a task of combinatorial nature, which can easily be
implemented.

The crucial point in the construction is the descent in dimension, which
forces the calculation to pass from the affine charts to open covers thereof in
a similar way as in the calculation of the ∆(I(X)). More precisely, b′ denotes
the maximal order and, hence, we know that the ideal ∆b

′−1(I(X)) describing
Sing

b
′(X) is itself of order at most 1 at all points of W ; on an affine chart, we

may now choose a system of generators for ∆b
′−1(I(X)) such that for a subset

f1, . . . , fs thereof the intersection of the singular loci of the corresponding
hypersurfaces is empty and the conditions on the intersection properties of
each of these hypersurfaces V (f

i
) with the exceptional divisors are satisfied

outside Sing(V (f
i
)). As the open cover, we then choose the complements of the

singular loci or, in practice, the complements of hypersurfaces generated by
(an appropriate subset of the) partial derivatives of the f

i
; the hypersurfaces

Z on each of these open sets are chosen to be the respective V (f
i
).

The remaining part of the calculation of the Coeff-ideal does not
cause any further difficulties. But we cannot recombine the local results
to obtain an auxilliary basic object on W or on the affine chart, because
the choice of the hypersurface Z clearly affects the auxilliary basic object.
Nevertheless, the value of the invariant and hence the maximal locus are in-
dependent of the choice of Z and we can hence recombine the pieces of the
maximal locus to obtain the center.

Construction 4.3 (Transformation of the Tower). After describing how
a tower of basic objects is created from a given basic object, the next task is to
consider how such a tower is transformed under a blowing up. (At this point it
is important to note that the algorithm of Villamayor does not recompute the
tower of basic objects from the transformed object, but transforms the whole
tower instead – obtaining the new value of the invariant from the transformed
tower.)
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To this end, let B = (W,X, b, E,E
bad

) be a basic object, say at the i-th
step of the resolution process, T

i
(B) = {B[0]

, B
[1]
, . . . , B

[e]
} the corresponding

tower of basic objects, where B [0] = B, and

Y = {x ∈ X | inv(i)(x) is maximal }

the center computed by means of this tower, which is shown to be permissible
for B in [4]. In particular, it consists of non-singular components which do
not intersect.

Let ˜B[j] be the Blowing up of B[j] at the center Y and denote the
collection of the transformed basic objects by T ′(B) = { ˜B[0]

, . . . , ˜B
[e]
}. Let

inv
(i)

[j]
= max{f

B
[j](x)} be the maximal value of the j-th fragment of the in-

variant corresponding to the j-th auxilliary object before blowing up. Now, let
k be minimal such that the locus of the fixed invariant value inv

(i)

[k]
is empty7

for ˜B[k]. This can occur in four situations:

(a) the ideal of the total transform of the second entry of the basic object
is a product of exceptional divisors, i.e. the new object is monomial

(b) the b-singular locus for the corresponding auxilliary object is empty

(c) the b′-singular locus for the corresponding auxilliary object is empty,
but the b-singular locus is non-empty

(d) the b′-singular locus is non-empty, but the maximal number of excep-
tional divisors from E

bad
simultaneously meeting a point thereof has

dropped.

In the first case, the object in question is monomial. In case (b), the respective
object is resolved and the maximal locus of the invariant truncated before
inv

(i)

[k]
is a permissible center. In case (c), we add all exceptional divisors of

˜B
[k] to the corresponding set E

bad
and define a new tower8 by

T
i+1(B) := { ˜B[0]

, . . . , ˜B
[k−1]
} ∪ T0( ˜B

[k]).

In the last case, the set Ebad of ˜B[k] remains unchanged, we compute a descent
in dimension with the new (lower) m to obtain an auxilliary object B

[k+1]

(i+1)

7As the invariant drops at each blowing up (by construction) and as the lowest dimension
of an ambient space in the tower is in general 1, there is always such a k for which the locus

of value inv
(i)

[k]
is empty. In the special case that the tower does not reach 1 as the lowest

dimension of the ambient space, the previous auxilliary object of lowest dimension is either
monomial or is of the type Baux. In the first case, the transformed auxilliary object is again
monomial; in the other case, Baux becomes empty after one blowing up by construction.

8By construction, all new auxilliary objects below ˜B[k] in the tower T0( ˜B[k]) are, hence,
created with E = ∅.
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whose set E
bad

coincides with the set E ′ of the descent. Hence the new tower
in this case is defined by

T
i+1(B) := { ˜B[0]

, . . . , ˜B
[k]
} ∪ T0(B

[k+1]

(i+1)
).

Remark 4.4. The construction of the center ensures that all exceptional di-
visors which have been born after the corresponding fragment of the invariant
last dropped are normal crossing with the centers arising from the maximal
locus of the invariant. As soon as this fragment of the invariant drops, the
subsequent auxilliary objects are recomputed and hence there is no way to
predict the intersection properties of the exceptional divisors with the center
arising from the new tower. Consequently, the subset E

bad
⊆ E is used to

mark those exceptional divisors which might cause problems concerning the
normal crossing condition for the center; the value of E

bad
for a given object

in the tower is altered precisely at the moments when the subsequent parts
of the tower need to be recomputed.

Example 4.5. To illustrate the rather technical construction, we consider a
very simple example for which all calculations can still be done by hand:

X = V (z2
− x

2
y

2) ⊆ C3 = W

Figure 1: An illustration of the original surface V (z2
− x

2
y

2).

(0) Initialization step: Construction of center of first blowing up.

Construction of the basic object B:

• B = (C3
, V (z2

− x
2
y

2), 2, ∅, ∅) =: B[0]

Maximal locus of inv
(0)

[0]
:

• Computation of the maximal order:
∆(z2

− x
2
y

2) = 〈z, xy2
, x

2
y〉
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∆2(z2
− x

2
y

2) = 〈1〉
Hence the maximal order b′ is 2 and the b

′-singular locus is
Sing2(B) = V (z, xy).

• Computation of maximal n
x
(E) unnecessary, because E = ∅

First descent in dimension:

• Choice of hypersurface of maximal contact:
We choose Z0 = V (z) which clearly satisfies 〈z〉 ⊆ ∆(z2

− x
2
y

2).
As the set of exceptional divisors is empty, there are no further
conditions to be checked.

• Construction of the first auxilliary object:
Coeff

Z0
(z2
− x

2
y

2) = 〈x2
y

2
, (xy2)2

, (x2
y)2
〉

= 〈x2
y

2
〉

B
Z0

= (C2
, V (x2

y
2), 2, ∅, ∅) =: B[1]

Maximal locus of inv
(0)

[1]
:

• Computation of the maximal order:
∆(x2

y
2) = 〈x2

y, xy
2
〉

∆2(x2
y

2) = 〈x2
, xy, y

2
〉

∆3(x2
y

2) = 〈x, y〉
∆4(x2

y
2) = 〈1〉

Hence the maximal order b′ is 4 and the b
′-singular locus is

Sing4(B
[1]) = V (x, y).

• Computation of maximal n
x
(E) unnecessary, because E = ∅

Second descent in dimension:

• Choice of hypersurface of maximal contact:
We choose Z1 = V (x) which satisfies 〈x〉 ⊆ ∆3(x2

y
2). The other

conditions hold trivially.

• Construction of the second auxilliary object:

Coeff
Z1

(x2
y

2) = 〈(y2)
4!

4−2 , y
4!

4−1 〉

= 〈y24
〉

B
[1]

Z1
= (C, V (y24), 24, ∅, ∅) =: B[2]

Maximal locus of inv
(0)

[2]
:

• Maximal order: 24

• maximal n
x
(E): 0
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Figure 2: These three images illustrate the three charts arising from
the first blowing up, which introduced new variables u, v, w for the
P2. Fixing u, v and w as names for the new variables introduced
in this blowing up, the left image corresponds to the chart w �= 0,
that is x = uz and y = vz, the ideal of the transformed surface
(lighter grey) is generated by 1− u2

v
2 in this chart, the one of the

exceptional divisor (darker grey to black) by z. The image in the
center illustrates the chart v �= 0, i.e. x = uy, z = wy; the ideal of
the transformed surface is generated by z2

− x
2
y

2, the one of the
exceptional divisor by y. The last image illustrates the third chart,
which basically coincides with the second one up to exchange of the
roles of x and y and of u and v.

Hence the tower of the original basic object is T0(B) = {B[0]
, B

[1]
, B

[2]
},

leading to the invariant values

inv(0)(w) =

{

(2, 0; 4, 0; 24, 0) w = (0, 0, 0)
(2, 0; 2, 0; 0, 0) w = (0, y, 0), y �= 0

which in turn imply that the first center is (0, 0, 0).

(1) First Blowing Up and Transformation of the Tower:

By blowing up this center, we obtain three charts (see Figure 2). It can
easily be checked by direct computation that the first one is already
resolved and that the two remaining ones are showing the same objects
up to renaming of variables due to the symmetry of the original situa-
tion. Hence, we only consider one of the latter two in detail: the chart
defined by x = uy, z = wy. As transformed basic objects, we obtain:

˜B
[0] = (C3

, V (w2
− u

2
y

2), 2, {V (y)}, ∅)

˜B
[1] = (C2

, V (u2), 2, {V (y)}, ∅)

˜B
[2] = (C2

, ∅, 24, {V (y)}, ∅).

Obviously, Sing
2
( ˜B[0]) = Sing

2
(w2
− u

2
y

2) �= ∅, but Sing
b
′( ˜B[1]) =
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Figure 3: These three images illustrate the three charts after the sec-
ond blowing up. Again the transformed surface is drawn in lighter
grey, the exceptional divisors in darker grey and black. The one on
the left corresponds to the resolved object, the one in the center to
case (2a) and the one on the left to case (2b).

Sing
4
(u2) = ∅.9 Thus we can set B

[0]

1
= ˜B

[0], but we have to recom-

pute B
[1]

1
. As Sing

2
(u2) �= ∅, we only need to correct E

bad
in ˜B[1] setting

it to E
bad

= {V (y)} before assigning this basic object to B
[1]

1
.

Additionally, we have to recompute the tower starting at B
[2]

1
: Accord-

ing to the formulae, we obtain b′ = 2, m = 1 and I(X ′) = 〈u2
, y

2
〉

from the basic object B
[1]

1
implying that B

[2]

2
is assigned the value

(C, V (u2), 2, ∅, ∅).

Therefore the new tower is T1(B) = {B
[0]

1
, B

[1]

1
, B

[2]

1
}, leading to the in-

variant values

inv(1)(w) =

{

(2, 0; 2, 1; 2, 0) w = (0, 0, 0)
(2, 0; 2, 0; 0, 0, ) w = (0, y, 0), y �= 0

which in turn imply that the second center is (0, 0, 0).10

(2) Second Blowing Up and corresponding transformations of the towers.

Again, the first chart can easily be checked to be resolved by direct
computation. The other two need to be considered separately:

(2a) Chart u = yr, w = yt.

9Testing whether the nX have dropped is meaningless here, because they are non-
negative integers and had value zero in the previous step.

10Although we obtain a center which is just the coordinate origin in the other chart as
well due to the symmetry in x and y of the original equation, these two points do not
coincide. More precisely, one of the two is ((0, 0, 0); (1 : 0 : 0)) ⊂ A3 × P2, the other one is
((0, 0, 0); (0 : 1 : 0)) ⊂ A3 × P2.
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As transformed basic objects, we obtain

˜B
[0]

1
= (C3

, V (t2 − r2
y

2
, 2, {∅, V (y)}, ∅) ,

˜B
[1]

1
= (C2

, V (r2), 2, {∅, V (y)}, {∅}) ,

˜B
[2]

1
= (C1

, V (r2), 2, {V (y)}, ∅) .

Clearly, Sing
2
(t2 − r2

y
2) �= ∅ and Sing

2
(r2) �= ∅, but the locus of invari-

ant value inv
(1)

[1]
is empty. Therefore, we can use ˜B

[0]

1
and ˜B

[1]

1
as B

[0]

2
and

B
[1]

2
in the new tower (without adding any further exceptional divisors to

E
bad

of B
[1]

2
) and we have to recompute B

[2]

2
obtaining the auxilliary ob-

ject (C1
, V (0), 2, {V (y)}, {V (y)}) which is already resolved. Hence the

upcoming center is determined by the maximal locus of (inv
(2)

[0]
; inv

(2)

[1]
)

which is V (t, r).
As the subsequent calculations in this branch are very similar to this
one respectively those in the branch (2b), we do not discuss this branch
of the resolution any further in this example.

(2b) Chart y = us, w = ut:

As transformed basic objects, we obtain

˜B
[0]

1
= (C3

, V (t2 − u2
s
2), 2, {V (s), V (u)}, ∅) ,

˜B
[1]

1
= (C2

, ∅, 2, {V (s), V (u)}, {V (s)}) .

(Note that ˜B
[2]

1
is irrelevant due to the structure of ˜B

[1]

1
.)

Because the second entry of ˜B
[1]

1
is the empty set, we know that the

ideal of the total transform of the second entry of B
[1]

1
is a product of

exceptional hypersurfaces and that we are in the monomial case. Us-
ing ˜B

[0]

1
as B

[0]

2
, we recompute the auxilliary basic object for entering

the algorithm of the monomial case: here we still have b′ = 2, m = 0,
I(X ′) = 〈t2 − u2

s
2
〉 and E

′ = {V (s), V (u)}, which leads to the auxil-
liary object

B
[1]

2
= (C2

, V (u2
s
2), 2, {V (s), V (u)})

which has already been dealt with in Example 3.211, and hence to the
tower

T2(B) = {B
[0]

2
, B

[1]

2
}.

From the calculations of Example 3.2, we obtain the center V (u) for

the auxilliary basic object B
[1]

2
and therefore the new center V (u, t)

corresponding to the invariant value (2, 0;−1, 2, (2)).

11As Ebad is irrelevant for the calculations in the monomial case, we have omitted it here.
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(3) Third Blowing Up in the (2b) branch: To simplify notation, we re-
name the variables to be x, y, z again. Then the tower before the blowing
up is T2(B) = {B

[0]

2
, B

[1]

2
} where

B
[0]

2
= (C3

, V (z2
− x

2
y

2), 2, {V (y), V (x)}, ∅) ,

B
[1]

2
= (C2

, V (x2
y

2), 2, {V (y), V (x)}, ∅) .

Figure 4: Illustration of the two charts arising from the blowing up
at the center determined in case (2b).

Only the object in the second chart, defined by z = ux is not resolved
yet. For this one the transformed objects are

˜B
[0]

2
= (C3

, V (u2
− y

2), 2, {V (y), V (1), V (x)}, ∅) ,

˜B
[1]

2
= (C2

, V (y2), 2, {V (y), V (1), V (x)}{V (x)}) .

The 2-singular locus of the first one is still non-empty and the second
one is still monomial. Hence the transformed tower is now

T3(B) = { ˜B
[0]

2
, ˜B

[1]

2
}.

As we are still in the monomial case for the first auxilliary object, we ob-
tain the upcoming center from example 3.2: V (z, y) with corresponding
invariant (2, 0;−1, 2, (1))

(4) Fourth Blowing Up

The objects in both charts are resolved. For simplicity, we only consider
the chart defined by u = ty. Here the transformed objects after the
blowing up are:

˜B
[0]

3
= (C3

, V (t2 − 1), 2, {V (1), V (1), V (x), V (y)}, {V (y)}) ,

˜B
[1]

3
= (C2

, ∅, 2, {V (1), V (1), V (x), V (y)}, {V (y)}) ,

and Sing
2
( ˜B

[0]

3
) = ∅ which is exactly what we wanted to achieve.
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Figure 5: Illustration of the two charts arising from the blowing up
at the center determined after the third blowing up.

Even in such a small example as this one, it is sometimes difficult to keep
track of the parent-child relationships of the various charts. Therefore it is
often useful to illustrate these in terms of a tree of charts:

Computational Remark 4.6. From the implementational point of view,
there are three aspects of the resolution process which greatly affect the ef-
ficiency of the resulting program: first of all the construction of the tower
which was discussed in 4.1, secondly the transformation of the towers, i.e.
the blowing up (see 1.9) and last but not least to combinatorial complexity
due to the use of charts – arising from blowing up and from passing to open
covers – which, of course, have non-empty intersections in general. This last
issue turns out to be the crucial point in the overall performance of the al-
gorithm: It is simply the number of redundant blowing ups that often makes
the algorithm of S. Encinas and O. Villamayor painfully slow in examples of
practical relevance. To tackle this problem, we need to analyze the overall
strategy of the choice of the centers. Clearly, the fundamental idea behind
the construction of the centers is the need to choose them as large as possible
while they still have to be subject to the conditions of permissibility.12

An obvious way to avoid unnecessary calculations is the use of symmetries
in the system of equations – as we did in the above example when determining
the center for the second blowing up. To achieve an even better improvement
following this idea, it is usually helpful to try to detect and preserve these
symmetries throughout the process as far as possible.

12In the algorithm of E. Bierstone and P. Milman, the choice of centers follows the same
fundamental idea, but as the construction of the invariant differs from the other algorithm
(e.g. using the Hilbert-Samuel function) and the strict transform is used instead of the
weak one, the number of blowing ups in this algorithm tends to be lower. However, the
computation of the invariant poses problems of a different kind, like the computation of
the maximal locus of the Hilbert-Samuel function. Moreover, as it is still necessary to pass
to charts, the problem of redundant blowing ups is also present here.
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Orig.
Surface

Step (1)
Chart 1

Exc.Div.:1

at pt.

Step (1)
Chart 2

Exc.Div.:1

Step (1)
Chart 3

Exc.Div.:1

Step (2)
Chart 1

Exc.Div.:1,2

Step (2b)
Chart 2

Exc.Div.:1,2

at pt.

Step (2a)
Chart 3

Exc.Div.:2

Symmetry
of (1)

Exc.Div.:1,3

Symmetry
of (1)

Exc.Div.:1,3

at pt.

Symmetry
of (1)

Exc.Div.:3

Step (3)
Chart 1

Exc.Div.:1,2,4

at line

Step (3)
Chart 2

Exc.Div.:1,4

Branch (2a)
Exc.Div.:2,7

at line

Branch (2a)
Exc.Div.:2,7

Symmetry
of (1)

Exc.Div.:1,3,5

at line

Symmetry
of (1)

Exc.Div.:1,5

Symmetry
of (1)

Exc.Div.:3,8

at line

Symmetry
of (1)

Exc.Div.:3,8

Step (4)
Exc.Div.:1,4,6

at line

Step (4)
Exc.Div.:4,6

Branch (2a)
Exc.Div.:2,7,4

at line

Branch (2a)
Exc.Div.:7,4

Symmetry
of (1)

Exc.Div.:1,5,6

at line

Symmetry
of (1)

Exc.Div.:5,6

Symmetry
of (1)

Exc.Div.:3,8,5

at line

Symmetry
of (1)

Exc.Div.:8,5

Figure 6: Tree of Charts for the example V (z2
− x

2
y

2): Boxes
with solid border represent final charts; boxes with dashed border
are charts, which have been discussed explicitly, whereas boxes
with dotted border represent charts which have not been discussed
in detail. In the whole resolution process 8 different exceptional
divisors appeared.

Additionally, there is a special situation in which it is often worth ap-
plying a simple heuristic: If the singular locus of the original object happens
to be a permissible center, this can be used as the very first center. In the
case of the Whitney umbrella, for instance, this make the difference between
a tree leading to twelve final charts and one consisting of just one blowing up
giving rise to 2 final charts.

Apart from the previously mentioned changes which do not alter the
course of the algorithm, it is also possible to carefully change the choice of
centers by means of a backtracking approach. More precisely, the algorithm
of Encinas-Villamayor uses weak transforms, but for the final result of em-
bedded resolution of singularities we are only interested in strict transforms.
Thus a natural idea would be to pass from weak to strict transforms after
each blowing up and compute a new tower corresponding to the new main
basic object, keeping only the partition of the set of exceptional divisors into
the various sets E

bad
unless the order of the respective auxilliary object drops

(compared to the one appearing before passing to the strict transform). Un-
fortunately, passing from weak to strict transform the invariant of the first
auxilliary object can even go up. Therefore it is not always possible to pass
from weak to strict transform, but it can be applied as a kind of heuristic,
falling back to the original algorithm of Encinas-Villamayor whenever a step
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is detected where the invariant increased. In this case, of course, the algo-
rithm has to follow the steps of the unchanged one until the maximal value
of a fragment of the invariant corresponding to a higher dimensional object
in the tower drops; only then the heuristic can be applied again. This back-
tracking approach can also be refined by slightly changing the construction
of certain auxilliary objects, but this is beyond the scope of this article.

5 Some Remarks on Applications

When considering practical applications of the resolution of singularities, e.g.
the calculation of an invariant like the topological zeta function, an obstacle,
which is common to all these tasks, is the fact that the final result is repre-
sented by means of charts. This makes it possible – even highly probable –
that the same point or subvariety may be present in several charts which, in
turn, implies that rather simple tasks, like e.g. counting intersection points of
two curves, cannot be performed in a direct way. Instead we need to a way to
identify the same point in different charts by moving through the whole tree
of charts in an appropriate way.

As blowing ups are isomorphisms away from the center, the process of
sucessively blowing down and then blowing up again does not cause any
problems for points which do not lie on an exceptional divisor at all or only lie
on exceptional divisors, which already exist in the chart at which the history
of the considered charts branched. If, however, the point lies on an exceptional
divisor which arises later, then blowing down beyond the moment of birth of
this divisor will inevitably lead to incorrect results, because this blow up map
is not an isomorphism. To avoid this problem, we need to represent the point
on the exceptional divisor as the locus of intersection of the exceptional divisor
with an auxilliary variety which is not contained in the exceptional divisor.
More formally speaking, we use the following simple fact from commutative
algebra:

Let I ⊂ K[x1, . . . , xn] be a prime ideal, J ⊂ K[x1, . . . , xn] another ideal such

that I + J is equidimensional and ht(I) = ht(I + J) − r for some integer

0 < r < n. Then there exist polynomials p1, . . . , pr ∈ I + J and a polynomial

f ∈ K[x1, . . . , xn] such that

√

I + J =
√

(I + (p1, . . . , pr)) : f.

In our situation, the ideal I is, of course, the ideal of the intersection of the
exceptional divisors in which the point or subvariety V (J) is contained. As
any sufficiently general set of polynomials p1, . . . , pr ∈ J \ (I ∩ J) leading to
the correct height of I +(p1, . . . , pr) will do and as the only truely restricting
condition on f is that it has to exclude all extra components of I+(p1, . . . , pr),
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we also have enough freedom of choice of the p1, . . . , pr, f to achieve that none
of them is contained in any further exceptional divisor that might be in our
way when blowing down.

Having solved the problem of identifying points which exist in more than
one chart, we can now consider a very simple application: we determine which
exceptional divisor in one chart coincides with which one in another chart.
The method to do this is quite simple: we simply compare the centers leading
to these exceptional divisors. To this end, we start at the root of the tree of
charts of the resolution and work our way up to the final charts. The criteria
for identifying the centers are quite simple: first of all, the centers can not
be the same, if the corresponding values of the governing function do not
agree, secondly, the centers cannot be the same if the exceptional divisors in
which they are contained are not the same and, in the last step, the remaining
candidates are compared explicitly by mapping them through the resolution
tree as described above. In the example of the last section, this corresponding
calculations are the following:

Example 5.1. In Example 4.5, identifying the exceptional divisor which
arose from the first blowing up can be done by simply considering the tree. As
we previously mentioned, the subsequent 0–dimensional centers in the charts
2 and 3 do not coincide and hence the identification of the exceptional divi-
sors E2 and E3 does not involve any further calculations. For the remaining
exceptional divisors, however, we cannot avoid passing through the tree. As
all of these calculations are rather similar, we restrict our considerations to
the comparison of the exceptional divisors which arise from the blowing ups
(2a) and (2b) and the respective subsequent blowing ups to illustrate the
main ideas of the identification process:

(a) Comparison of Centers in (2a) and (2b):

The ideal of the center (2a) in the respective chart is 〈u, t〉 as we had
previously computed; the one of (2b) is 〈t, r〉 in another chart. Both of
these charts arose from the same blowing up. Therefore we can look at
the respective centers as subsets of A3

×P2: the first one is V (u, w, r, t),
whereas the second one is V (u, y, w, t). These are two different lines
meeting in the point V (u, y, w, r, t). Hence the two exceptional divisors
arising from the blowing ups at these centers cannot be the same.

(b) Comparison of Center in (2b) and subsequent Center in Branch (2a):

The ideal of the subsequent (and last) center in the branch (2a) is
V (t, y, a) ⊂ A3

× P1, using variable names t, r, y for A3 and a, b for P1.
Luckily, this is not contained in the newborn exceptional divisor V (r),
which allows us to blow it down directly to obtain V (u, y, w, t) in the
parent, coinciding with the center (2b).
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(c) Comparison of Center in (2a) and subsequent Center in Branch (2b):

In this case, the subsequent (and last) center in the branch (2b) is
V (t, s, c) ⊂ A3

× P1, using variable names t, u, s for A3 and c, d for P1.
Again this is not contained in the newborn exceptional divisor V (u).
Hence blowing down yields V (y, w, s, t) which clearly does not coincide
with the center of (2a).
Here we could also have proceeded by the argument that the newborn
exceptional divisor in the (2b) branch also appears later on in the (2a)
branch and hence any later divisor in the (2b) branch cannot coincide
with the earliest exceptional divisor arising in the (2a) branch.
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Newton Polyhedra of Discriminants:

A Computation

Evelia Garćıa Barroso Bernard Teissier

Abstract

We compute the Newton polyhedron in the natural coordinates of the
discriminant of a germ of complex analytic mapping (C3

× C, 0) →
(C3
× C, 0) associated by the polar hypersurface construction to the

degeneration of a plane analytic branch with two characteristic pairs
to the monomial curve with the same semigroup. The result shows
that the jacobian Newton polyhedron is not in general constant in
an equisingular family of complete intersection branches (whereas it
is constant in an equisingular family of plane branches). However, in
this case the information that it contains, namely the semigroup, is
constant and only the encoding changes.

Introduction

To any germ of an isolated complex analytic hypersurface singularity defined
by a convergent power series equation f(u0, . . . , un

) = 0, one can associate
its jacobian Newton polygon, which is the Newton polygon in the coordinates

(t0, t1) of the discriminant of the map

(`, f) : (Cn+1
, 0) −→ (C2

, 0)

given by t0 = `(u0, . . . , un
), t1 = f(u0, . . . , un

), where ` is a sufficiently general
linear form. We say that a family of hypersurfaces with isolated singularities is
equisingular if the singular locus of the total space of the family is a stratum of
the minimal Whitney stratification of that total space. For a family of germs
of plane complex analytic curves, this is equivalent to the usual definitions
of equisingularity, and in particular to the constancy of the local embedded
topological type.

1991 Mathematics Subject Classification. 32S55, 14H20
Key words. Newton polyhedron, discriminant, monomial curve
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The discriminants associated in the way just described to the members
f

v
= 0 of an equisingular family of equations for germs do not in general form

an equisingular family; the numbers of their branches may vary. It is therefore
remarkable that their Newton polygons in the coordinates (t0, t1), which are
the jacobian Newton polygons, are constant (see [6]).

Thanks to a result of Merle ([5]), it is even true that the jacobian Newton
polygon of a plane branch is a complete invariant of its equisingularity type;
it determines and is determined by the Puiseux characteristic (see §2). In
particular the jacobian Newton polygon has g compact edges, where g + 1 is
the number of Puiseux characteristic exponents, and they can be computed
from the Puiseux exponents; we call this the decomposition theorem.

In the case of a plane curve C defined by f(u0, u1) = 0, the information
contained in the jacobian Newton polygon concerns the possible contacts with
C at 0 of the germs of analytically irreducible components (the branches) of
the relative polar curve ∂f

∂u1

+τ
∂f

∂u0

= 0 for a general value of τ . The invariants
extracted from the jacobian Newton polygon appear in many different types
of objects related to the singularity. For example in the JSJ decomposition of
the complement in the sphere S3

ε
(of radius ε centered at 0) of a small tubular

neighborhood of the knot S3

ε
∩C for small enough ε. In fact, alternative proofs

of the topological invariance of the inclinations of the edges of the jacobian
Newton polyhedron mentioned above have been given using this fact (see
[4]). They also appear in the description of the asymptotic behaviour of the
Lipschitz-Killing curvature (as a real surface) of the Milnor fiber B4

ε
∩f

−1(t) ⊂
B4

ε
for 0 < |t| � ε � 1 (see [3]), in the  Lojasiewicz exponent at 0 of f(u0, u1)

and so on. The constancy of the jacobian Newton polygon then appears as
a tool to understand how the local topology determines geometric structures
such as the JSJ decomposition, or even metric information.

It seems therefore interesting to examine whether this phenomenon of
constancy of the jacobian Newton polygon in an equisingular family extends
to other equisingular families of curves, for example those which are local
complete intersections.

There is a particularly interesting such family, which is the specialization
of a given plane branch to the monomial curve with the same semigroup (see
[7]). The general fiber of this family is the plane branch suitably reimbedded
in affine (g + 1)-dimensional space, where g is the number of its Puiseux
exponents.

In this paper, we compute the jacobian Newton polyhedra of the jacobian
discriminants of the fibers of such a family of complete intersections in the
case of a branch with two characteristic pairs, and we obtain the following
information:

• The jacobian Newton polyhedron is not constant, although the family
is Whitney-equisingular.
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• However, the information contained in the jacobian Newton polyhedra
of the special and general fibers is the same, and is equivalent to the
topology of the branch.

It is interesting to verify on this example that although the equations of the
discriminants which we consider are, as usual, rather complicated, the method
of computation by Fitting ideals makes it possible to determine at least their
Newton polyhedron.

The interested reader will also note that the system of equations which we
study is degenerate with respect to its Newton polyhedron in the usual sense
for v 6= 0, so that the generic methods of computation of Newton polyhedra of
discriminants à la Gel’fand-Kapranov-Zelevinski (see [2]) do not apply. This
system of equations becomes non degenerate for v = 0, of course with respect
to a different Newton polyhedron.

This work has a strongly computational flavour, and computer algebra
tools did play a role in computing the first examples which led to conjecture
the general shape of the result. Although Singular was not used, we are
happy to dedicate it to Gert-Martin Greuel, who did so much to develop
computer algebra tools for singularists.

1 Plane Branches, Semigroups and Monomial

Curves

(A reminder)

For us, a branch is an irreducible germ of a complex analytic curve. A plane
branch is given by a convergent power series f(u0, u1) ∈ C{u0, u1} which is
not a unit and is irreducible in that ring. The branch is the germ at 0 of the
set of solutions of f(u0, u1) = 0. By the theorem of Newton, after possibly
a change of coordinates to achieve that u0 = 0 is transversal to it at 0, the
branch C can be parametrized near 0 as follows

u0(t) = t
n

u1(t) = a
m

t
m + a

m+1t
m+1 + · · · + a

j
t
j + · · · with m ≥ n.

Let us now consider the following grouping of the terms of the series u1(t): set
β0 = n and let β1 be the smallest exponent appearing in u1(t) which is not
divisible by β0. If no such exponent exists, it means that u1 is a power series
in u0, so that our branch is analytically isomorphic to C, hence non singular.
Let us suppose that this is not the case, and set e1 = (n, β1), the greatest
common divisor of these two integers. Now define β2 as the smallest exponent
appearing in u1(t) which is not divisible by e1. Define e2 = (e1, β2); we have
e2 < e1, and we continue in this manner. Having defined e

i
= (e

i−1, βi
), we
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define β
i+1 as the smallest exponent appearing in u1(t) which is not divisible

by e
i
. Since the sequence of integers

n > e1 > e2 > · · · > e
i
> · · ·

is strictly decreasing, there is an integer g such that e
g

= 1. At this point, we
have structured our parametric representation as follows:

u0(t) = tn

u1(t) = antn+a2nt2n+ . . .+ a
kn

tkn+a
β1

tβ1 +a
β1+e1

tβ1+e1 + . . .+ a
β1+k1e1

tβ1+k1e1

+a
β2

tβ2 + a
β2+e2

tβ2+e2 + . . . + a
βq

tβq + a
βq+eq

tβq+eq + . . .

+a
βg

tβg + a
βg+1t

βg+1 + . . .

where, by construction, the coefficients of the t
βi for i ≥ 1 are not zero.

The integers (n = β0, β1, . . . , βg
) are called the Puiseux characteristic

exponents of the branch.
Let C{u0, u1}/(f(u0, u1)) = O be the analytic algebra of a germ of an-

alytically irreducible curve C, and let O be its normalization; we have an
injection O ↪→ O, in fact given by u0 7→ t

n
, u1 7→ u1(t), which makes O

an O-module of finite type, and O is a subalgebra of the fraction field of O.
Since O is isomorphic to C{t}, the order in t of the series defines a mapping
ν : C{t} \ 0 → N which satisfies

i) ν(a(t)b(t)) = ν(a(t)) + ν(b(t)) and

ii) ν(a(t) + b(t)) ≥ min(ν(a(t)), ν(b(t))) with equality if ν(a(t)) 6= ν(b(t));

in other words, ν is a valuation of the ring C{t}.

We consider the valuations of the elements of the subring O, i.e., the
image Γ of O \ {0} by ν; in view of i), it is a semigroup contained in N. The
fact that O is a finite O-module implies that N \ Γ is finite.

Now, we seek a minimal set of generators of Γ as a semigroup: Let β0 be
the smallest nonzero element in Γ, let β1 be the smallest element of Γ which
is not a multiple of β0, let β2 be the smallest element of Γ which is not a
combination with non negative integral coefficients of β0 and β1, i.e., is not
in the semigroup

〈

β0, β1

〉

, and so on. Finally, since N \ Γ is finite, we find in
this way a minimal set of generators:

Γ =
〈

β0, β1, . . . , βg

〉

.

This set of generators is uniquely determined by the semigroup Γ, and of
course determines it.

Let us take the notations introduced for the Puiseux exponents; it is easy
to check that if we set β0 = n, the multiplicity, then β0 = β0 = n, β1 = β1.



Newton Polyhedra of Discriminants: A Computation 189.

After that is becomes more complicated. Zariski ([9], Th. 3.9) proved the
following recursive formula: β

0
= β0 = n, β

1
= β1 and for q ≥ 2,

β
q

= n
q−1βq−1 − β

q−1 + β
q
,

where the integers n
i

are defined inductively by e0 = n and e
i−1 = n

i
e

i
,

where the e
i

are the successive greatest common divisors introduced at the
beginning of the section, so that we have

n = β0 = β
0

= n1 . . . n
g
.

Thus, the datum of these generators, or of the semigroup, is equivalent to the
datum of the Puiseux characteristic of (X, 0), or of its topological type. The
proof relies on a formula of Max Noether which computes the contact exponent
(C,D)0

m0(D)
of two analytic branches at the origin in terms of the coincidence of

their Puiseux expansions in fractional powers of x.
The semigroups coming from plane branches are characterized among all semi-
groups of analytically irreducible germs of curves by the following two prop-
erties:

1) n
i
β

i
∈

〈

β0, . . . , βi−1

〉

2) ni
β

i
< β

i+1
.

That the semigroups of plane branches have these properties follows from the
induction formula and the inequalities β

i
< β

i+1. The converse can be proved
by the construction outlined below (see [7]).

Conversely, given a semigroup Γ in N with finite complement, we can asso-
ciate to it an analytic (in fact algebraic) curve, called the monomial curve

associated to Γ. If Γ =
〈

β0, β1, . . . , βg

〉

, the monomial curve C
Γ is described

parametrically by

u0 = t
β0 , u1 = t

β1 , . . . , u
g

= t
βg .

On the other hand, the relations 1) above mean that there exist natural

numbers `
(j)

i
satisfying

1′)

n1β1 = `
(1)

0
β0 ,

n2β2 = `
(2)

0
β0 + `

(2)

1
β1 ,

...

n
j
β

j
= `

(j)

0
β0 + · · · + `

(j)

j−1
β

j−1

...

n
g
β

g
= `

(g)

0
β0 + · · · + `

(g)

g−1
β

g−1 .
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These relations translate into equations for the curve C
Γ ⊂ Cg+1; since u

i
=

tβi, our curve satisfies the g equations

f
j

= u
nj

j
− u

`
(j)

0

0
u

`
(j)

1

1
. . . u

`
(j)

j−1

j−1
= 0, 1 ≤ j ≤ g,

and it can be shown that they actually define C
Γ ⊂ Cg+1, so that if Γ is the

semigroup of a plane branch, CΓ is a complete intersection.
The relations 1′) are not uniquely determined, but there is a canonical

choice: dividing each `
(j)

k
by n

k
we can request that for every k ≥ 1 we have

`
(j)

k
< n

k
; it is the choice we shall make in the sequel.

Remark that if we give to ui
the weight β

i
, the i-th equation is homoge-

neous of degree n
i
β

i
.

The connection between a plane curve C having semigroup Γ and the
monomial curve is much more precise and interesting than the formal relation
we have just seen; by small deformations of the monomial curve one obtains
all the branches with the same semigroup. In fact, the best way to understand
all branches with semigroup Γ is to consider the not necessarily plane curve
CΓ (CΓ is plane if and only if C has only one characteristic exponent).

By definition of Γ, there are elements ξq
∈ O with ν(ξ

q
) = β

q
. We can

write these elements in C{t} as

ξ
q

= t
βq +

∑

j>βq

γ
q,j

t
j

.

Let us consider the one-parameter family of parametrizations

u0 = t
m

, u1 = t
β1 +

∑

j>β1

v
j−β1γ1,j

t
j

, . . . , u
g

= t
βg +

∑

j>βg

v
j−βgγ

g,j
t
j

.

The reader can check that for v 6= 0, the curve thus described is isomorphic
to our original curve C. (hint: make the change of parameter t = vt

′ in the ξ
q

and the change of coordinates u
j

= v
βju

′
j
, and remember the definition of the

ξ
j
). For v = 0, we have the parametric description of the monomial curve.

So we have, in fact, described a map C × C → Cg+1 × C which induces
the identity on the second factors (with coordinate v). The image of this map
is a surface, which is the total space of a deformation of the monomial curve,
all of its fibers except the one for v = 0 being isomorphic to our plane curve
C. It follows that the monomial curve is a specialization, in this family, of our
plane curve. In this specialization the multiplicity and the semigroup remain
constant; in a rather precise sense it is an equisingular specialization, or one
may say that the plane curve is an equisingular deformation of the monomial

curve with the same semigroup.
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The same phenomenon can be also observed in the language of equa-
tions rather than parametrizations. Let us consider a one parameter family
of equations for curves in Cg+1, of the form

F1 = u
n1

1
− u

`
(1)

0

0
− vu2 = 0 ,

F2 = u
n2

2
− u

`
(2)

0

0
u

`
(2)

1

1
− vu3 = 0 ,

...
...

F
g−1 = u

ng−1

g−1
− u

`
(g−1)

0

0
u

`
(g−1)

1

1
. . . u

`
(g−1)

g−2

g−2
− vu

g
= 0 ,

Fg
= u

ng
g − u

`
(g)

0

0
u

`
(g)

1

1
. . . u

`
(g)

g−1

g−1
= 0 .

For v = 0 we get the equations of the monomial curve, and for v 6= 0 we get a
curve which has semigroup Γ; this is a general heuristic principle of equisingu-
larity: we have added to each equation of the monomial curve, homogeneous
of degree n

i
β

i
, a perturbation of degree β

i+1 > n
i
β

i
, and this should not

change the equisingularity class (the perturbation is ”small” compared to the
equation).

Notice that for each fixed v 6= 0 the curve described by the above equa-
tions is a plane curve: for simplicity take v = 1; then use the first equation to

compute u2 = u
n1

1
−u

`
(1)

0

0
, substitute this in the next equation, and use this to

compute u3 as a function of u0, u1, and so on. Finally, the last equation gives
us the equation of a plane curve of the form
(

· · ·
(

(

u
n1

1
− u

`
(1)

0

0

)

n2

− u
`
(2)

0

0
u

`
(2)

1

1

)
n3

− · · ·

)

ng

− u
`
(g)

0

0
u

`
(g)

1

1

(

u
n1

1
− u

`
(1)

0

0

)

`
(g)

2 · · · = 0 .

The first consequence (see [7]) is that we can produce explicitely the equation
of a plane curve with given characteristic exponents: compute the semigroup
and its generators, and then write the equation above.

A more important fact is that one can show (loc. cit) that any plane
curve with a given semigroup appears up to isomorphism as a fiber in a
deformation depending on a finite number of parameters: it is a deformation
of the monomial curve obtained by adding to the j-th equation a polynomial
in the u

i
’s of order > n

j
β

j
, where u

j+1 appears linearly if j < g, and these
polynomials can in principle be explicitely computed.

In fact it is shown in [7] that we can in this manner produce equations
for all branches having the same semigroup (or equisingularity type) up to
an analytic isomorphism.

In view of the constancy of the jacobian Newton polygon for equisingular
families of plane branches, it is plausible that the special family above repre-
sents all degenerations of plane branches to the associated monomial curve,
as far as the variation of jacobian Newton polyhedra are concerned. We shall
therefore make computations for this family.
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2 The Discriminant

Set v = (v1, . . . , vg−1), and consider the map

φ : Cg+1 × Cg−1 −→ Cg+1 × Cg−1

(u0, . . . , ug
, v) 7−→ (u0, F1, . . . , Fg

, v)

in the coordinates (t0, . . . , tg, v) on the right-hand copy of Cg+1 × Cg−1.
Let us first verify that the morphism φ is flat. We shall see below that

we have even better. Indeed, it is a map between two non singular spaces,
whose fiber over 0 is a complete intersection. The flatness follows. Since the
special fiber has an isolated singularity at the origin, the critical subspace C
of φ is finite over its image in Cg+1×Cg−1, at least locally, by the Weierstrass
preparation theorem. This image (or at least its germ at 0) is then a complex
analytic space which is by definition the discriminant of the map φ ([6], §1).

Let us now compute the discriminant of the mapping φ as the image of
critical subspace using the Fitting ideal of the algebra of the critical subspace
C as in [6].

The critical subspace is defined by the ideal generated by the coefficients
of the differential form

dF1 ∧ · · · ∧ dF
g
∧ dt0 ∧ dt1 · · · ∧ dt

g
∧ dv1 · · · ∧ dv

g−1.

Since F
i

= u
ni

i
− u

`
(i)

0

0
· · ·u

`
(i)

i−1

i−1
− v

i
u

i+1 for j < g and F
g

= u
ng
g − u

`
(g)

0

0
· · ·u

`
(g)

g−1

g−1
,

we see that a generator for the ideal of the critical subspace can be taken of
the form

C = β0u
n1−1

1
· · ·ung−1

g
−

∑

α

c
α
v

α1

1
· · · v

αg−1

g−1
u

m0(α)

0
· · ·umg(α)

g

where each α
i

is 0 or 1 and (m1(α), . . . , m
g
(α)) 6= (n1 − 1, . . . , n

g
− 1).

Lemma 2.1. Giving to the variable ui
the weight β

i
and to v

j
the (negative)

weight β
j
− β

j+1, the polynomial C is homogeneous of degree
∑

g

i=1
(n

i
− 1)β

i
.

Proof. The statement follows directly from the homogeneity of the polyno-
mials F

i
and the computation of C as a jacobian determinant.

Let us denote by IC the ideal of C[u0, . . . , ug
, t0, . . . , tg, v1, . . . , vg−1] gener-

ated by (u0 − t0, F1 − t1, . . . , Fg
− t

g
, C). The generators constitute a regular

sequence since their initial forms involve different variables.
Let us consider the C[t0, . . . , tg, v1, . . . , vg−1]-module

OC = C[u0, . . . , ug
, t0, . . . , tg, v1, . . . , vg−1]/IC.
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Lemma 2.2. The C[t0, . . . , tg, v1, . . . , vg−1]-module

C[u0, . . . , ug
, t0, . . . , tg, v1, . . . , vg−1]/(u0 − t0, F1 − t1, . . . , Fg

− t
g
)

is free and generated by the β0 images of the monomials u
i1

1
· · ·u

ig
g with 0 ≤

i
k
≤ n

k
− 1.

Proof. It follows directly for the form of the equations because each of the
equations expresses the corresponding u

ni

i
as a linear combination with coef-

ficients in C[t0, . . . , tg, v1, . . . , vg−1] of our generating monomials.

If we identify t0 and u0 and set

N = C[t0, . . . , tg, v1, . . . , vg−1, u1, . . . , ug
]/(F1 − t1, . . . , Fg

− t
g
),

the C[t0, . . . , tg, v1, . . . , vg−1]-module OC is the cokernel of the map of multi-
plication by C in N . By [6] again we have:

Proposition 2.3. 1. The discriminant Disc(φ) of the morphism φ is (up to

multiplication by a nonzero constant) the determinant of the matrix M of the

multiplication in the free C[t0, . . . , tg, v1, . . . , vg−1]-module N by the equation

C of the critical subspace.

2. Giving to the variable t
j

the weight n
j
β

j
and to v

k
the (negative)

weight β
k
− β

k+1, the polynomial ∆ = Disc(φ) ∈ C[t0, . . . , tg, v1, . . . , vg−1] is

homogeneous of degree

deg∆ = β0(

g
∑

i=1

(n
i
− 1)β

i
).

Proof. The first part of the assertion follows directly from §1 of [6]. For
the second part, first note that if we give to u

i
the weight β

i
, the free

C[t0, . . . , tg, v1, . . . , vg−1]-module N is graded when the variables are given
the weights of the proposition since the equations F

i
are homogeneous.

We now apply Lemma 1 of §1 of [6]; in view of Lemma 2.1, if we want
the morphism of multiplication by C to be homogeneous of degree 0, setting
A = C[t0, . . . , tg, v1, . . . , vg−1] and d

i1,...,ig
=

∑

g

k=1
i
k
β

k
, we may write the first

copy of N as

N =
⊕

i1,...,ig

A[d
i1,...,ig

],

where A[s] is the A-module A regraded (shifted) by giving 1 the degree s,
and then we must write the second copy of N as

N =
⊕

i1,...,ig

A[d
i1,...,ig

−

g
∑

k=1

(n
k
− 1)β

k
]



194. E. Garćıa Barroso and B. Teissier

where 0 ≤ i
k
≤ n

k
− 1. The result follows immediately from loc.cit. which

states that the degree of the determinant is the sum of the differences of the
shifts in the first and second copies over all values of i1, . . . , ig.

Remark 2.4. • In what follows, we shall constantly use the fact that the
Fitting image definition of the discriminant commutes with base change and
in particular with restriction over subspaces of the target space (see [6]).

• We denote by τ
i

the exponent of t
i

in a monomial, and by υ
j

the exponent
of v

j
; then Proposition 2.3 means that all the monomials appearing in the

equation of the discriminant satisfy (setting n0 = 1):

g
∑

i=0

n
i
β

i
τ
i
+

g−1
∑

j=1

(β
j
− β

j+1)υj
= β

0
(

g
∑

i=1

(n
i
− 1)β

i
).

3 Curves with Two Characteristic Pairs

The purpose of this section is the computation of the Newton polyhedron in
the coordinates (t0, t1, t2) of the discriminant of the morphism φ in the case
of two characteristic pairs, both for v = 0 and v nonzero.

If g = 2 the morphism φ is defined by the equations

u0 − t0 = 0 , u
n1

1
− u

`
(1)

0

0
− vu2 − t1 = 0 , u

n2

2
− u

`
(2)

0

0
u

`
(2)

1

1
− t2 = 0 . (1)

Identifying u0 with t0, we have the equations

u
n1

1
− t

`
(1)

0

0
− vu2 − t1 = 0 , u

n2

2
− t

`
(2)

0

0
u

`
(2)

1

1
− t2 = 0 ,

and the equation of the critical subspace is

C = β0u
n1−1

1
u

n2−1

2
− `

(2)

1
vt

`
(2)

0

0
u

`
(2)

1
−1

1
= 0 .

In view of Proposition 2.3, we have to compute the matrix of multiplication
by C in the basis e

i,j
= u

i

1
u

j

2
, 0 ≤ i ≤ n1 − 1, 0 ≤ j ≤ n2 − 1 for the

C[t0, t1, t2, v]-module N = C[t0, t1, t2, v, u1, u2]/(F1 − t1, F2 − t2).

Remark 3.1. If `
(2)

1
= 0, which is the case for example if Γ = 〈6, 8, 27〉, the

critical subspace is C = β0u
n1−1

1
u

n2−1

2
, and the computation is simpler but

has to be conducted a little differently, introducing B = t
`
(2)

0

0
+ t2 and the

conclusion is the same. We will present the computations in the case where

`
(2)

1
≥ 1.
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In order to write down the matrix of a presentation of the C{t0, t1, t2, v}-
module OC, we have to compute modulo the ideal (F1 − t1, F2 − t2) the effect
of the multiplication by C on the generators e

i,j
. The matrix can be presented

by blocks, each block corresponding to a fixed value of j. Our matrix is
constructed as an n2 × n2 matrix of blocks of size n1; when j is fixed and we
fix also the block j ′ in which we look at the relations, the situation can be
represented by an n1 × n1-matrix M

j,j
′ whose elements are indexed by (i, i′).

For j = 0, if i = 0, the relation is the equation C = 0, which we write as

e
n1−1,n2−1 − (1 − c)vT0e

`
(2)

1
−1,0

= 0,

where c = 1 −
`
(2)

1

β0

and we set for simplicity T0 = t
`
(2)

0

0
.

For j = 0 and 1 ≤ i ≤ n1 − 1, we have two cases: if i < n1 − `
(2)

1
+ 1, we

obtain the relation:

Ae
i−1,n2−1 + vt2ei−1,0 + cvT0e

`
(2)

1
+i−1,0

= 0,

where we set for simplicity A = t
`
(1)

0

0
+ t1.

If i ≥ n1 − `
(2)

1
+ 1, we obtain the relation:

Ae
i−1,n2−1 + vt2ei−1,0 + cvT0Ae

`
(2)

1
+i−1−n1,0

+ cv
2
T0e

`
(2)

1
+i−1−n1,1

= 0.

This gives us our first line of blocks: For j = 0 the relations involve elements
in the blocks j ′ = 0, j

′ = 1 and j
′ = n2 − 1.

For j ′ = 0 the matrix is:

M0,0 =































0 0 . . . −(1 − c)vT0 0 0 . . . 0
vt2 0 . . . cvT0 0 . . . 0
0 vt2 . . . 0 cvT0 . . .

...
...

...
cvT0

cvAT0 0 . . . vt2 . . . 0 0
...

...
...

0 cvAT0 0 . . . . . . vt2 0 0
0 . . . cvAT0 . . . 0 . . . vt2 0































where the nonzero elements are aligned on parallels to the second diagonal,
the first nonzero element of the first line is in column `

(2)

1
and the last nonzero

element of the first column is in line n1 − `
(2)

1
+ 2.
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For j
′ = 1 the matrix is:

M0,1 =



























0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . .

...
...

...
0

cv
2
T0 0 0 . . . 0 0

...
...

...
0 cv2

T0 0 . . . . . . . . . 0 0
0 . . . cv2

T0 . . . 0 . . . 0 0



























where the nonzero elements are aligned on parallels to the second diagonal,
the first and only nonzero element of the last line is in column `

(2)

1
− 1 and

the last nonzero element of the first column is in line n1 − `
(2)

1
+ 2.

For j
′ = n2 − 1 the matrix is

M0,n2−1 =































0 0 . . . 0 0 0 . . . 1
A 0 . . . 0 0 . . . 0
0 A . . . 0 0 . . .

...
...

...
0

0 0 . . . A . . . 0 0
...

...
...

0 0 0 . . . . . . A 0 0
0 . . . 0 . . . 0 . . . A 0































.

For 1 ≤ j < n2 − 1, the relations involve elements in the blocks j
′ = j − 1,

j ′ = j and j
′ = j + 1. They are as follows:

• For i = 0, we have

t2en1−1,j−1 + cvT0e
`
(2)

1
−1,j

+ AT0e
`
(2)

1
−1,j−1

= 0.

• For 0 < i < n1 − `
(2)

1
+ 1, we have

At2ei−1,j−1 + vt2ei−1,j
+ AT0e

i+`
(2)

1
−1,j−1

+ cvT0e
i+`

(2)

1
−1,j

= 0.

• For i ≥ n1 − `
(2)

1
+ 1, we have:

At2ei−1,j−1 + vt2ei−1,j
+ A

2
T0e

i+`
(2)

1
−n1−1,j−1

+(1 + c)vAT0e
i+`

(2)

1
−n1−1,j

+ cv
2
T0e

i+`
(2)

1
−n1−1,j+1

= 0.
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For j
′ = j − 1, the matrix is:

Mj,j−1 =































0 0 . . . AT0 0 . . . 0 t2

At2 0 . . . AT0 0 . . . 0
0 At2 . . . 0 AT0 . . .

...
...

...
AT0

A
2
T0 0 . . . At2 . . . 0
...
0 0 . . . . . . At2 0 0
0 . . . A

2
T0 . . . 0 At2 0































where the nonzero elements are aligned on parallels to the second diagonal,
the first nonzero element of the first line is in column `

(2)

1
and the last nonzero

element of the first column is in line n1 − `
(2)

1
+ 2.

For j
′ = j, the matrix is:

Mj,j =































0 0 . . . cvT0 0 0 . . . 0
vt2 0 . . . cvT0 0 . . . 0
0 vt2 . . . 0 cvT0 . . . 0
...

...
...

...
cvT0

(c+1)vAT0 0 . . . vt2 . . . 0 0
...

...
0 (c+1)vAT0 0 . . . . . . vt2 0 0
0 . . . (c+1)vAT0 . . . 0 vt2 0































where the nonzero elements are aligned on parallels to the second diagonal,
the first nonzero element of the first line is in column `

(2)

1
and the last nonzero

element of the first column is in line n1 − `
(2)

1
+ 2.

For j
′ = j + 1, the matrix is:

Mj,j+1 =



























0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . .

...
...

...
0

cv2
T0 0 . . . 0 . . . 0 0

...
0 cv2

T0 0 . . . . . . . . . 0 0
0 . . . cv2

T0 . . . 0 0 0


























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where the nonzero elements are aligned on parallels to the second diagonal,
the first and only nonzero element of the last line is in column `

(2)

1
− 1.

For j = n2 − 1, the relations involve elements in the blocks j
′ = n2 − 1,

j ′ = n2 − 2, j
′ = 0 and j

′ = 1. They are as follows:

• For i = 0, we have

t2en1−1,n2−2 + cvT0e
`
(2)

1
−1,n2−1

+ AT0e
`
(2)

1
−1,n2−2

= 0.

• For i > 0 and i ≤ n1 − `
(2)

1
, we have:

At2ei−1,n2−2 + AT0e
`
(2)

1
+i−1,n2−2

+ vt2ei−1,n2−1 + cvT0e
`
(2)

1
+i−1,n2−1

= 0.

• For n1 − `
(2)

1
+ 1 ≤ i ≤ 2(n1 − `

(2)

1
), we have:

At2ei−1,n2−2 + A
2
T0e

`
(2)

1
+i−n1−1,n2−2

+ (1 + c)AT0ve
`
(2)

1
+i−n1−1,n2−1

+ vt2ei−1,n2−1 + cv
2
t2e

`
(2)

1
+i−n1−1,0

+ cv
2
T0e2`

(2)

1
+i−n1−1,0

= 0.

• For i ≥ 2(n1 − `
(2)

1
) + 1, we have:

At2ei−1,n2−2 + A
2
T0e

`
(2)

1
+i−n1−1,n2−2

+ (1 + c)vAT0e
`
(2)

1
+i−n1−1,n2−1

+ vt2ei−1,n2−1 + cv
2
t2e

`
(2)

1
+i−n1−1,0

+ cv
2
AT0e2`

(2)

1
+i−2n1−1,0

+ cv
3
T0e2`

(2)

1
+i−2n1−1,1

= 0.

For j
′ = 0, the matrix is:

Mn2−1,0 =

































0 0 . . . 0 0 0
...

... . . .
... . . .

0
cv2

t2 0 . . . cv
2
T0 0

... cv
2
t2

...
...

0 . . . cv2
T0

cv
2
AT0 . . . . . . 0
...

... . . .
... . . .

0 cv2
AT0 . . . cv

2
t2 0

































where the nonzero elements are aligned on parallels to the second diagonal,
the first line with nonzero entries is the line with number n1− `

(2)

1
+2, and its

last nonzero element is in column `
(2)

1
. The last nonzero element of the first

column is in line 2(n1 − `
(2)

1
+ 1).
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For j
′ = 1, the matrix is:

Mn2−1,1 =



























0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . .

...
...

...
0

cv3
T0 0 . . . 0 . . . 0 0

...
0 cv3

T0 0 . . . . . . . . . 0 0
0 . . . cv3

T0 . . . 0 0 0



























where the first nonzero element of the first column is on line 2(n1 − `
(2)

1
+ 1).

For j ′ = n2 − 2, the matrix is:

Mn2−1,n2−2 =































0 0 . . . AT0 0 . . . 0 t2

At2 0 . . . AT0 0 . . . 0
0 At2 . . . 0 AT0 . . . 0
...

...
...

...
AT0

A
2
T0 0 . . . At2 . . . 0 0
...

...
0 A2

T0 0 . . . . . . At2 0 0
0 . . . A2

T0 . . . 0 0 At2 0































where the first nonzero element of the first line is in column `
(2)

1
and the last

nonzero element of the first column is in line n1 − `
(2)

1
+ 2.

For j ′ = n2 − 1, the matrix is:

Mn2−1,n2−1 =































0 0 . . . cvT0 0 . . . 0
vt2 0 . . . cvT0 0 . . . 0
0 vt2 . . . 0 cvT0 . . . 0
...

...
...

cvT0

(1+c)vAT0 0 . . . vt2 . . . 0
...

...
0 (1+c)vAT0 0 . . . . . . vt2 0 0
0 . . . (1+c)vAT0 . . . 0 vt2 0































where the first nonzero element of the first line is in column `
(2)

1
and the last

nonzero element of the first column is in line n1 − `
(2)

1
+ 2.



200. E. Garćıa Barroso and B. Teissier

Finally, the matrix M of the presentation of the C[t0, t1, t2, v]-module OC is
described by the blocks M

j,j
′:

M =























M0,0 M0,1 0 . . . 0 0 M0,n2−1

.

.

.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.

.

. . . .

.

.

. . . .

.

.

.

0 Mj−1,j−2 Mj−1,j−1 Mj−1,j 0

0 Mj,j−1 Mj,j Mj,j+1 0 0

.

.

.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.

.

. . . .

.

.

. . . .

.

.

.

Mn2−1,0 Mn2−1,1 0 . . . 0 Mn2−1,n2−2 Mn2−1,n2−1























.

We are going to get information about the determinant of the matrix of
relations between the generators e

i,j
using this decomposition into blocks.

Lemma 3.2. For v = 0, the determinant of the matrix M is given by:

detM = A
n1−1 (detM

j,j−1)
n2−1

.

Proof. For v = 0 the only nonzero blocks are M0,n2−1 and the M
j,j−1 which

are all equal. By expanding the determinant of M successively along the last
n1 columns, we find that it is equal to A

n1−1 times the determinant of the
matrix M of size β0−n1 obtained by deleting the first n1 lines and the last n1

columns of M . That matrix is subdivided into blocks M
j,j

′, among which the
only nonzero ones are the n2 − 1 blocks M

j,j−1, which are all equal; therefore
they commute and we can compute the determinant of M as the product of
the determinants of the blocks (see [1], §9, Lemme 1). The result follows.

Lemma 3.3. For v = 0 and t2 = 0, the discriminant is equal to

T
n1(n2−1)

0
A

n2(n1−1)+`
(2)

1
(n2−1)

.

As a consequence, the Newton polyhedron of the discriminant of φ contains

as an edge the segment joining the two points

P1 = (n1(n2 − 1)`
(2)

0
, n2(n1 − 1) + `

(2)

1
(n2 − 1), 0)

and

P2 = ((n1 − 1)β
1

+ (n2 − 1)β
2
, 0, 0).

Proof. The first part of the statement follows directly from Lemma 3.2. Since
the Newton polyhedron of the discriminant is necessarily entirely on one side
of any of the coordinate hyperplanes τ

i
= 0 or υ = 0, its intersection with one

of them is necessarily a face. If, upon intersecting with the other hyperplane,
we find a segment, that segment is necessarily an edge. We apply this to υ = 0
and τ2 = 0 and use the expressions of the n

i
β

i
in terms of β

k
with k < i to

compute the coordinates of the points P
i
. This proves the second part.
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Lemma 3.4. For v = 0 the Newton polyhedron of the discriminant of φ|
v=0

lies entirely on one side of (“above”) the hyperplane

n2τ0 + β1τ1 = (n1 − 1)n2β1 .

Proof. Using the result of Lemma 3.2 and the expression of M
j,j−1, we see that

it suffices to show that the exponents (τ0, τ1) of the monomials appearing in
the determinant of M and arising from the term A

n1−1
t
n2

2
in the determinant

of M
j,j−1 satisfy the inequality n2τ0+β1τ1 ≥ (n1−1)n2β1. Indeed all the other

monomials contain higher exponents of t0 or t1. This amounts to studying
the exponents of t0 and t1 appearing in the expansion of A

n1−1
A

(n1−1)(n2−1) =

A
(n1−1)n2 . But these are terms t

i`
(1)

0

0
t
j

1
with i + j = (n1 − 1)n2. Substituting in

the equation of our hyperplane and remembering that by definition n2`
(1)

0
=

β1 gives the result.

Lemma 3.5. The Newton polyhedron of the discriminant of φ contains as an

edge the segment joining the two points

P2 = ((n1 − 1)β
1

+ (n2 − 1)β
2
, 0, 0) and P3 = ((n1 − 1)β

1
, 0, n1(n2 − 1)).

Proof. Since the Newton polyhedron of the discriminant is contained in the
hyperplane of homogeneity, its intersection with the coordinate plane τ1 =
0, υ = 0 is contained in a line. By convexity this line is a segment. By the same
argument as above it is an edge of the Newton polyhedron of the discriminant.
We are going to determine its extremities by seeking the points of maximum
and minimum value of τ0. We apply this to υ = 0 and τ1 = 0, which means
that we compute the expression of the discriminant for v = 0 and t1 = 0
using lemma 3.2 and the expression of M

j,j−1 to seek the maximum value of
the exponent of t0, which is obtained by taking the product of the AT0 and
A2

T0 in the expansion of the determinant of M
j,j−1, and its minimum value,

obtained by taking the term An1−1
t
n1

2
in that expansion. Finally we use the

expressions of the n
i
β

i
in terms of β

k
with k < i to compute the coordinates

of the points P
i
.

Lemma 3.6. The Newton polyhedron of the discriminant of φ contains as an

edge the segment P3P4, where P4 = (0, n2(n1 − 1), n1(n2 − 1)).

Proof. Again, use Lemma 3.2 and observe that for v = t0 = 0 the determinant
of M

j,j−1 is equal to the monomial t
n1−1

1
t
n1

2
. Use the expressions of the n

i
β

i

in terms of β
k

with k < i to compute the coordinates of the point P4. On the
other hand, it follows from Lemma 3.2 that the Newton polyhedron for v = 0
is entirely on one side of the hyperplane τ2 = n1(n2 − 1). It meets it in the
two points P3, P4 which are in different coordinate planes, therefore along the
edge P3P4.
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Lemma 3.7. The segment P1P4 is an edge of the Newton polyhedron of φ

and the plane containing it and parallel to the τ1-axis supports a non-compact

face of the Newton polyhedron.

Proof. The equation of the hyperplane parallel to the t1-axis and containing
P1P4 is:

H : τ0 + `
(2)

0
τ2 = n1(n2 − 1)`

(2)

0
.

The expression given above for the matrix M shows that the products appear-
ing in the expansion of its determinant are all up to a constant factor of the
form vδ

A
α
T

β

0
t
γ

2
with β+γ ≥ n1(n2−1). The result follows because this implies

by a direct computation that the Newton polyhedron of the discriminant of
φ is entirely on one side of H.

Proposition 3.8. The Newton polyhedron of the discriminant of the map φ

restricted to v = 0 has one compact face which is is the convex hull of the

points P1, P2.P3, P4 and two non compact faces, the plane parallel to the τ1

axis and containing the segment P1P4 and the plane parallel to the τ2-axis and

containing the segment P3P4.

Proof. It follows from the previous lemmas since we know by Proposition 2.3
that the compact face of the Newton polyhedron for v = 0 is contained in the
plane β0τ0 + n1β1τ1 + n2β2τ2 = β0((n1 − 1)β1 + (n2 − 1)β2).

Lemma 3.9. The convex hull of the points P3, P4, P5, where P5 = (0, 0, β0−1)
is a face of the Newton polyhedron of φ.

Proof. Taking t0 = t1 = 0, the determinant of the matrix M reduces to the

monomial v
(n1−1)n2t

β0−1

2
, which corresponds to P5. To prove the lemma it suf-

fices to show that the Newton polyhedron is entirely on one side of (“above”)
the hyperplane β0τ0 + n1β1τ1 + β0β1τ2 − β0(β0 − 1)β1 = 0 determined by the
points P3, P4, P5.

Given a point P with coordinates (τ0, τ1, τ2, υ) satisfying the relation of
homogeneity

β
0
τ0 + n1β1

τ1 + n2β2
τ2 + (β1 − β2)υ − β

0
((n1 − 1)β

1
+ (n2 − 1)β

2
) = 0

of Proposition 2.3, we must check that it gives a positive value to

H2(τ0, τ1, τ2) = β0τ0 + n1β1τ1 + β0β1τ2 − β0(β0 − 1)β1.

A short computation using the identities between the β
j

and β
k

after eliminat-
ing τ0 and τ1 by substracting the homogeneity relation from H2 and rewriting
(modulo that relation)

H2(τ0, τ1, τ2) = β0((n1 − 1)β1 + (n2 − 1)β2) − β0(β0 − 1)β1

+ (β2 − β1)υ + (β
0
β

1
− n2β2

)τ2 ,
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shows that for such a point we have the equality

H2(τ0, τ1, τ2) = (β2 − β1)(β0(n2 − 1) + υ − n2τ2),

so that we have the required inequality if and only if n2τ2 − υ ≤ β
0
(n2 − 1).

But this is always true since the greatest possible exponent of t2 in the
determinant of M is β0 − 1, corresponding to the terms in the subdiagonal
of M , and by looking again at the matrix one sees that τ2 − υ ≤ n2 − 1 since
there are only n2 − 1 occurrences of t2 without a factor v.

Proposition 3.10. The Newton polyhedron of the discriminant of the map

φ for a fixed v 6= 0 has two compact faces, which are respectively the convex

hulls of P1, P2.P3, P4 and of P3, P4, P5 and one non compact face, which is

that of Lemma 3.7.

Proof. The statement follows from the previous lemmas.

t0

t1

t2

P1

P3

P4

P2

P5

Figure 1: Newton polyhedron of the discriminant of φ.



204. E. Garćıa Barroso and B. Teissier

Figure 1 gives an idea for the shape of the Newton polyhedron for v 6= 0. The
non-compact face which appears for v = 0 is suggested in thinner lines.

The intersection with τ1 = 0 is the jacobian Newton polygon of the plane
branch.

1. P1 = (n1(n2 − 1)`
(2)

0
, n2(n1 − 1) + `

(2)

1
(n2 − 1), 0),

2. P2 = ((n1 − 1)β1 + (n2 − 1)β2, 0, 0),

3. P3 = ((n1 − 1)β1, 0, n1(n2 − 1)),

4. P4 = (0, n2(n1 − 1), n1(n2 − 1)),

5. P5 = (0, 0, β
0
− 1).

4 A Question of Genericity

The linear form u0 is not general with respect to the monomial curve defined

by the vanishing of f1 = u
n1

1
− u

`
(1)

0

0
and f2 = u

n2

2
− u

`
(2)

0

0
u

`
(2)

1

1
; this is attested

by the fact that the critical space of the map (u0, f1, f2) is not reduced,
contradicting a known result on polar varieties (see [8], Chap. IV). Therefore
it could be that the Newton polyhedron that we obtain for v = 0 is not
really the jacobian Newton polyhedron of the monomial curve. We are going
to verify that in fact it is.

The method is to check that considering the critical subspace with respect
to a general linear form u0 + σu1 + τu2 affects the matrix of our presentation
only by adding terms whose effect on the determinant is to possibly add
exponents which can be seen to be above the Newton polyhedron computed
for u0. Therefore those terms do not modify the Newton polyhedron.

A direct computation shows that modulo the equation f1 = 0 we have

df1 ∧ df2 = n1n2u
n1−1

1
u

n2−1

2
du1 ∧ du2 − `

(1)

0
n2u

`
(1)

0
−1

0
u

n2−1

2
du0 ∧ du2

+(n1`
(2)

0
+ `

(1)

0
`
(2)

1
)u

`
(1)

0
+`

(2)

0
−1

0
u

`
(2)

1
−1

1
du0 ∧ du1 .

In fact, the computation gives

df1 ∧ df2 = n1n2u
n1−1

1
u

n2−1

2
du1 ∧ du2 − `

(1)

0
n2u

`
(1)

0
−1

0
u

n2−1

2
du0 ∧ du2

+u
`
(2)

0
−1

0
u

`
(2)

1
−1

1
(n1`

(2)

0
u

n1

1
+ `

(1)

0
`
(2)

1
u

`
(1)

0

0
)du0 ∧ du1,

but modulo f1, we can replace u
n1

1
by u

`
(1)

0

0
. From this it follows, using the

definitions of the `
(j)

k
, that

df1 ∧ df2 ∧ du0 = β
0
u

n1−1

1
u

n2−1

2
du0 ∧ du1 ∧ du2,

df1 ∧ df2 ∧ du1 = β
1
u

`
(1)

0
−1

0
u

n2−1

2
du0 ∧ du1 ∧ du2,

df1 ∧ df2 ∧ du2 = β
2
u

`
(1)

0
+`

(2)

0
−1

0
u

`
(2)

1
−1

1
du0 ∧ du1 ∧ du2,
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the last equation being read mod.f1. The equation of our critical subspace
with respect to a general linear form therefore now reads, modulo f1,

β
0
u

n1−1

1
u

n2−1

2
+ σβ

1
u

`
(1)

0
−1

0
u

n2−1

2
+ τβ

2
u

`
(1)

0
+`

(2)

0
−1

0
u

`
(2)

1
−1

1
= 0.

Since σ and τ are now assumed to be “general” constants, we may simplify
this to

u
n1−1

1
u

n2−1

2
+ σu

`
(1)

0
−1

0
u

n2−1

2
+ τu

`
(1)

0
+`

(2)

0
−1

0
u

`
(2)

1
−1

1
= 0.

Since u0 = t0, this means that we have to study which effect adding the mul-

tiplication by σt
`
(1)

0
−1

0
u

n2−1

2
+ τt

`
(1)

0
+`

(2)

0
−1

0
u

`
(2)

1
−1

1
has on our matrix and its de-

terminant for v = 0.
Using the same method as above, we see that the submatrices M

j,j
′ which

are affected are M0,n2−1, which becomes

M̃0,n2−1 =







































σt
`
(1)

0
−1

0
0 . . . 0 0 0 . . . 1

A σt
`
(1)

0
−1

0
. . . 0 0 . . . 0

0 A σt
`
(1)

0
−1

0
0 0 . . .

...
...

...
0

0 0 . . . A . . . 0 0
...

...
...

0 0 0 . . . . . . A σt
`
(1)

0
−1

0
0

0 . . . 0 . . . 0 . . . A σt
`
(1)

0
−1

0







































,

and M
j,j

, for j ≥ 0, which becomes (remember that v = 0)

M̃j,j = τ



































0 0 . . . t
`
(1)

0
+`

(2)

0
−1

0
0 . . . 0

0 0 . . . t
`
(1)

0
+`

(2)

0
−1

0
. . . 0

...
...

...
...

t
`
(1)

0
+`

(2)

0
−1

0

At
`
(1)

0
+`

(2)

0
−1

0
0 . . . 0 . . . 0 0

...
...

0 . . . 0 . . . . . . 0 0

0 . . . At
`
(1)

0
+`

(2)

0
−1

0
. . . 0 0 0



































.

(the nonzero elements are aligned on parallels to the second diagonal, the

first nonzero element in the first line is in column `
(2)

1
, and the first nonzero
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element in the first column is in line n1 − `
(2)

1
+ 2), and, finally, the matrix

M
j,j−1, which becomes (setting U0 = t

`
(1)

0
−1

0
)

M̃j,j−1 =

























σU0t2 0 . . . AT0 σT0U0 . . . 0 t2

At2 σU0t2 . . . AT0 σT0U0 . . . 0

0 At2 . . . 0 AT0 . . .

.

.

.

.

.

.

.

.

. σT0U0

σt

`
(1)

0

0
T0U0 AT0

A
2
T0 σt

`
(1)

0

0
T0U0 . . . At2 . . . 0

.

.

.

0 0 . . . . . . At2 σU0t2 0

0 . . . A
2
T0 σt

`
(1)

0

0
T0U0 0 At2 σU0t2

























.

The matrix M̃(0) corresponding to a general linear form and v = 0 has the
following structure: it is described by the blocks M̃

j,j
′:

M̃(0) =





















M̃0,0 0 0 . . . 0 0 M̃0,n2−1

M̃1,0 M̃1,1 0 0 . . . 0

.

.

.

.

.

. . . .

.

.

. . . .

.

.

.

0 M̃j−1,j−2 M̃j−1,j−1 0 0

0 M̃j,j−1 M̃j,j . . . 0 0

.

.

.

.

.

. . . .

.

.

. . . .

.

.

.

.

.

.

.

.

. . . .

.

.

. . . .

.

.

.

0 0 0 . . . 0 M̃n2−1,n2−2 M̃n2−1,n2−1





















.

Let us set E = det M̃0,n2−1 and, using the fact that the matrices M̃
j,j

and
M̃j,j−1 are in fact independant of j, write D = det M̃

j,j
and S = det M̃

j,j−1.
We can now use the Laplace expansion (see [1, §8]) of the determinant with
respect to the last n1 columns, we obtain (neglecting signs) an expression
±detM̃ = EdetM1 ± DdetN1. Then we notice that we can again use the
Laplace expansion with respect to the last n1 lines or n1 columns, and we
obtain

± det M̃(0) = ES
n2−1 ± D

n2.

The discriminant D is easy to compute and equal to

D = τ
n1A

`
(2)

1
−1

t
n1(`

(1)

0
+`

(2)

0
−1)

0
.

We can check that the exponent of t0 appearing in D
n2 is larger than an

exponent already appearing in the discriminant for σ = τ = 0. Therefore, it
does not affect the Newton polyhedron.

In the expression that we have seen above in Lemma 3.2 for ` = u0 and
v = 0, the power of t0 which appears is

(n1 − 1)`
(1)

0
+ (n2 − 1)

(

n1(`
(1)

0
+ `

(2)

0
) + (`

(2)

1
− 1)`

(1)

0

)

.
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We only have to prove the inequality

n1n2(`
(1)

0
+ `

(2)

0
− 1) + n2(`

(2)

1
− 1)`

(1)

0

≥ (n1 − 1)`
(1)

0
+ (n2 − 1)

(

n1(`
(1)

0
+ `

(2)

0
) + (`

(2)

1
− 1)`

(1)

0

)

.

After some rewriting, it comes down to

`
(2)

1
`
(1)

0
+ n1`

(2)

0
− n1n2 ≥ 0.

But if we remember that we have the equality

`
(2)

0
β

0
= n2β2

− `
(2)

1
β

1
= (n2 − 1)β

2
+ β

2
− `

(2)

1
β

1

and the fact that `
(2)

1
< n1, we get `

(2)

0
≥ n2, and this suffices to prove our

inequality.
Let us now deal with ESn2−1: The exponent of the diagonal term in E,

equal to σ
n1t

n1(`
(1)

0
−1)

0
, is larger than the exponent of t

(n1−1)`
(1)

0

0
which appears

in A
n1−1, because `

(1)

0
> n1. So we can forget about that diagonal term in E.

Next, let us consider Sn2−1: Our polyhedron for v = 0 is bounded by the
three hyperplanes

1. β0τ0 + n1β1τ1 + n2β2τ2 = β0((n1 − 1)β1 + (n2 − 1)β2)

2. n2τ0 + β
1
τ1 = (n1 − 1)n2β1

3. τ0 + `
(2)

0
τ2 = n1(n2 − 1)`

(2)

0

Calling L1, L2, L3 the linear forms appearing in the left-hand side of these
three equations, for each L

i
we seek successively in each column of the matrix

M̃j,j−1 the terms which give it the lowest value and which it is possible to
choose in the expansion of the discriminant, and then check that such a choice
gives rise in ESn2−1 to exponents which are above the corresponding support
hyperplane of our polyhedron.

For example, the linear form L1 takes as minimum value in the first `
(2)

1

columns the value β0(2`
(1)

0
− 1 + `

(2)

0
) which corresponds to σt

`
(1)

0

0
T0U0, and on

the last n1 − `
(2)

1
columns the minimal value β0(`

(1)

0
− 1 + `

(2)

0
) which corre-

sponds to σT0U0. This gives us a term t
n1(`

(1)

0
−1+`

(2)

0
)+`

(2)

1
`
(1)

0

0
in S and, there-

fore, exponents
(

(n2 − 1)(n1(`
(1)

0
−1+`

(2)

0
) + `

(2)

1
`
(1)

0
) + (n1−1− i)`

(1)

0
, i, 0

)

in
the expansion of Sn2−1

A
n1−1.

Since n1β1
= `

(1)

0
β

0
, it suffices to check the inequality on L1 for i = 0.

This means to verify the inequality

(n2 − 1)
(

(n2 − 1)(n1(`
(1)

0
− 1 + `

(2)

0
) + `

(2)

1
`
(1)

0
)
)

+ (n1 − 1)`
(1)

0

≥ (n1 − 1)β
1

+ (n2 − 1)β
2
.
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We can now use the equalities β
2

= n1`
(2)

0
+ `

(1)

0
`
(2)

1
and n2`

(1)

0
= β

1
which

follow from the definitions to rearrange the terms on the left into

(n2 − 1)β
2

+ (n1 − 1)β
1

+ (n2 − 1)(`
(1)

0
− n1 + 2)

and prove that the inequality follows from `
(1)

0
> n1.

If we now take L2, the term giving the minimal value in each column of
M̃j,j−1 is σU0t2. This gives a term with τ0 = n1(n2−1)(`

(1)

0
−1) + (n1−1)`

(1)

0
,

which again gives the same value to L2 as all the other terms coming from
An1−1. So we have to prove the inequality

n1n2(n2 − 1)(`
(1)

0
− 1) + (n1 − 1)n2`

(1)

0
≥ (n1 − 1)n2β1

.

Again, using n2`
(1)

0
= β1, we can rearrange the left-hand side of this inequality

into (n1 − 1)n2β1 + (`
(1)

0
− n1)n2(n2 − 1), and the result then follows from

`
(1)

0
> n1. The last case is left to the reader. From these computations one

finally deduces that the Newton polyhedron with respect to the linear form
u0 is indeed the general one for v = 0.

5 The Information is Constant

To conclude let us check that the Newton polyhedra for v = 0 and for v 6=
0 both contain the same information, namely the semigroup of the plane
branch, or equivalently its Puiseux characteristic, its equisingularity type, or
its topological type.

First, it follows from the description of the polyhedra that they are both
determined by the generators of the semigroup; the numbers β

i
, n1, n2 and

`
(j)

k
are all determined by the semigroup. The Newton polyhedron for v 6= 0

contains as a plane section the jacobian Newton polyhedron of the plane
branch which is known to determine the equisingularity type, so that its
datum is equivalent to that of the equisingularity type, or the semigroup. It
is also easy to check directly that its knowledge gives us the generators of the
semigroup: the point P5 gives us β0 = n1n2, so that from the homogeneity
relation of Proposition 2.3 we know n1β1

and n2β2
. But once we know β

0
the

coordinates of the point P3 give us n1 and n2, and we are done.
It remains to verify that no information is lost when v = 0. Let us collect

the information that we have: First we have the homogeneity relation for
v = 0:

β
0
τ0 + n1β1

τ1 + n2β2
τ2 = β

0
((n1 − 1)β

1
+ (n2 − 1)β

2
).

It gives us the coefficients up to a multiplicative rational factor.
The point P4 gives us n1 − n2 = d by difference of its second and third

coordinates. Substituting in the second coordinate we find that it is equal
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to n2(n2 + d − 1), so that we know the product and the difference of n2 and
n2 +d−1. Since d is known, we now know n2, hence also n1 and their product
β0. From the homogeneity equation we can finally deduce β1 and β2.
So the information is indeed constant, with two different encodings.

Questions: It is to be hoped that for any number of characteristic pairs, the
Newton polyhedron for v 6= 0 has exactly g compact faces, which intersect
the plane τ1 = · · · = τ

g−1 = 0 along the jacobian Newton polygon of the
plane branch, and that the information contained in the Newton polyhedron
for v = 0 is still equivalent to the knowledge of the semigroup of the branch.

More generally, one can hope that given a branch, plane or not, such that
the monomial curve with the same semigroup is a complete intersection, the
jacobian Newton polyhedron associated to the map defined by the equations
of the branch and a general linear form encodes the semigroup.
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Depth and Differential Forms

Helmut A. Hamm

Abstract

The purpose of this paper is to show that certain theorems about the
de Rham cohomology of smooth complex projective varieties are still
valid for the lower cohomology groups if we pass from a smooth variety
to a local complete intersection, still using the ordinary de Rham com-
plex. This concerns the isomorphism between singular and de Rham
cohomology, Hodge decomposition, Lefschetz theorem on hyperplane
section and Gysin sequence. Moreover, the Akizuki-Nakano theorem
can be generalized to this case.

Introduction

Let X be a smooth complex algebraic variety. Then the singular cohomology
of X can be expressed by holomorphic forms: Hk(X; C) ' Hk(X, Ω•

X
), where

Ω•
X

denotes the complex of sheaves of holomorphic differential forms on X

and Hk(X, Ω•
X

) the k-th hypercohomology group of this complex: de Rham
cohomology. The key ingredient is the holomorphic Poincaré lemma.

If X is singular the Poincaré lemma fails, in general, so singular and de
Rham cohomology are different. But for local complete intersections there is
still a coincidence for small k.

This circumstance has already been observed long ago in singularity the-
ory, when differential forms were used in order to study the topology of an
isolated singularity: If we look locally at a hypersurface with isolated singu-
larity the Picard-Lefschetz monodromy is a very useful invariant. Brieskorn
[5] showed that the characteristic polynomial of this monodromy can be cal-
culated analytically, using differential forms. Greuel [12] generalized this in
his thesis to complete intersections. A technical difficulty for him was that he
had to generalize the so-called de Rham lemma. He managed this problem

1991 Mathematics Subject Classification. 14F40, 14M10, 32S20, 32S35
Key words. Depth, de Rham cohomology, Akizuki-Nakano theorem, Lefschetz theorem,

Gysin sequence, Hodge decomposition
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using an extension theorem due to Scheja [20], the prerequisite is here some
depth condition. In this context he realized that the Poincaré lemma extends
in a weaker form to local complete intersections.

We will use the generalized de Rham lemma here as a starting point in
order to compare geometric and analytic Lefschetz theorems; by this we mean
theorems which compare the cohomology of a projective variety and certain
hypersurfaces, in particular hyperplane sections, where cohomology is taken
in the sense of singular resp. holomorphic de Rham cohomology. In fact, the
Lefschetz theorem for holomorphic de Rham cohomology is closely related
to a generalized Akizuki-Nakano theorem. Finally we will discuss to which
extent there is a Gysin sequence for de Rham cohomology. We will include
Hodge-theoretic aspects, using the du Bois complex [6].

The results underline the impact of the generalization obtained by Greuel
in his thesis on the study of lower de Rham cohomology groups.

So, let us replace the assumption that X is smooth by the one that X is
locally a complete intersection. When speaking of complex algebraic varieties
we mean a a separated scheme of finite type over Spec C. The strength of the
results will depend on the dimension of the singular locus of X. In this paper
we denote the latter by Σ

X
and put dim ∅ := 0.

If one considers functions, i.e. differential forms of degree zero, one can
work under a more general assumption, see [16]; this case is especially inter-
esting in view of the Picard group.

In particular, we will prove (with Σ := Σ
X

):

Theorem 0.1 (Akizuki-Nakano Theorem). Let X be a complex projective

variety which is locally a complete intersection of dimension n, F an ample

line bundle on X. Then Hq(X, Ωp

X
⊗ F

−1) = 0 for p + q < n− dim Σ.

Theorem 0.2. Let X be a complex projective variety which is locally a com-

plete intersection of dimension n. Then

H
k(X; C) ' Hk(X, Ω•

X
) ' ⊕

p+q=k
H

q(X, Ωp

X
)

for k < n− dim Σ.

Note that we have the first isomorphism already by Greuel’s thesis [12].

Theorem 0.3 (Lefschetz theorem for differential forms). Let X ⊂ P
m

be a complex projective variety which is locally a complete intersection of

dimension n, H a hyperplane in P
m

which is sufficiently general, Y := X∩H,

codim
X

Y = 1. Then:

a) The mapping Hr(X, Ω•
X

)→ Hr(Y, Ω•
Y
) is bijective for r < n−dim Σ

Y
−

1.
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b) The mapping H
q(X, Ωp

X
)→ H

q(Y, Ωp

Y
) is bijective for p + q < n −

dim Σ
Y
− 1.

Theorem 0.4. Under the hypothesis of Theorem 0.3, we have long exact

Gysin sequences:

. . . → H
q(X, Ωp

X
)→ H

q(X, Ωp

X
(log Y ))→ H

q(Y, Ωp−1

Y
)

→ H
q+1(X, Ωp

X
)→ . . .

for p ≤ n− dim Σ, and

. . . → Hk(X, Ω•
X

)→ Hk(X, Ω•
X

(log Y ))
Res

→ Hk−1(Y, Ω•
Y
)

→ Hk+1(X, Ω•
X

)→ . . .→ Hn−dim Σ−2(Y, Ω•
Y
) .

1 A de Rham Lemma for Complete Intersec-

tions

This section presents known results in a form which is suitable for the follow-
ing.

Let U be an open neighbourhood of 0 in Cm, f1, . . . , fk
: U → C holo-

morphic, X := {z ∈ U | f1(z) = . . . = f
k
(z) = 0}, dim X = n := m− k, so X

is a complete intersection in U . Let Σ
X

be the singular locus of X. Note:

Ωp

X,0
= Ωp

Cm
,0
/(f1, . . . , fk

, df1, . . . , dfk
)

We want to show:

Theorem 1.1. depth Ωp

X,0
≥ n− p for p ≤ n− dim Σ

X
.

Proof. Put Ωp := Ωp

Cm
,0
. Note that depth Ωp = m. We have:

0 −→ Ωp

/(f1, . . . , fj−1)
�fj

−→ Ωp

/(f1, . . . , fj−1) −→ Ωp

/(f1, . . . , fj
) −→ 0

so inductively: depth Ωp
/(f1, . . . , fj

) ≥ m− j. In particular,

depth Ωp

/(f1, . . . , fk
) ≥ n . (1)

So, it is sufficient to prove part b) of the following Proposition 1.2 for j = k

(cf. [12, Lemma 1.6]).

Proposition 1.2. Let 1 ≤ j ≤ k and 0 ≤ p ≤ n− dim Σ
X
.

a) dfj
∧ : Ωp−1

/(f1, . . . , fk
, df1, . . . , dfj

) → Ωp
/(f1, . . . , fk

, df1, . . . , dfj−1) is

injective,
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b) depth Ωp
/(f1, . . . , fk

, df1, . . . , dfj
) ≥ n− p.

Proof. Induction on j, for fixed j on p. The case j = 0 is covered by (1), so
assume that j > 0. Again, the case p = 0 is clear, because

depth Ω0
/(f , df1, . . . , dfj

) = depth Ω0
/(f) ≥ n

by (1) (here, f stands for f1, . . . , fk
). Step from p− 1 to p (p > 0):

a) Let V be on open Stein neighbourhood of 0, then we have

H0(V, Ωp−1

V
/(f , df1, . . . , dfj

))
dfj∧

H
0(V, Ωp

V
/(f , df1, . . . , dfj−1))

H
0(V \ Σ, Ωp−1

V
/(f , df1, . . . , dfj

))
dfj∧

H
0(V \ Σ, Ωp

V
/(f , df1, . . . , dfj−1))

By the induction hypothesis, depth Ωp−1

V
/(f , df1, . . . , dfj

) > n− p, so the left
vertical is injective by Scheja’s extension theorem, see below. The injectivity
of the lower horizontal is obvious. So the upper horizontal is injective, too.

b) We have an exact sequence

0 −→ df
j
∧ Ωp−1

/(f , df1, . . . , dfj
) −→ Ωp

/(f , df1, . . . , dfj−1)

−→ Ωp

/(f , df1, . . . , dfj
) −→ 0

and df
j
∧ Ωp−1

/(f , df1, . . . , dfj
) ' Ωp−1

/(f , df1, . . . , dfj
) by part a).

By the induction hypothesis, depth Ωp−1
/(f , df1, . . . , dfj

) ≥ n− p + 1,
depth Ωp

/(f , df1, . . . , dfj−1) ≥ n− p, which implies our assertion.

Theorem 1.3. (Scheja [20]) Let S be a coherent analytic sheaf on a complex

space X, Z a closed analytic subset, then the mapping

H
k(X,S) −→ H

k(X \ Z,S)

is bijective for k < depth S − dim Z − 1 and injective for k = depth S −

dim Z − 1, i.e. H
k

Z
(X,S) = 0 for k ≤ depth S − dim Z − 1.

Corollary 1.4. If X is a complex space which is locally a complete intersec-

tion and codim
X

Σ
X
≥ 1 the space X is reduced.

Proof. Let j : X\Σ
X
→ X be the inclusion. Then O

X
→ j∗OX\ΣX

is injective
by Theorem 1.3.
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2 Application: Complete Intersections in Pm

Let f1, . . . , fk
∈ C[Z0, . . . , Zm

] be homogeneous of degree d1, . . . , dk
. Let X be

the subvariety of P
m

defined by f1 = . . . = f
k

= 0, dim X = n := m− k, so
X is a complete intersection. Here, we put dim ∅ := 0.

Theorem 2.1. a) Let p ≤ n− dim Σ
X
. Then H

q(P
m
, Ωp

Pm
)→ H

q(X, Ωp

X
)

is bijective for q < n− p and injective for q = n− p.

b) The mapping Hr(P
m
, Ω•

Pm
)→ Hr(X, Ω•

X
) is bijective for r < n−dim Σ

X

and injective for r = n− dim Σ
X
.

Proof. Put Ωp := Ωp

Pm
.

a) Suppose s < 0. It is well-known that H
q(P

m
, Ωp(s)) = 0 for q < m. Let us

look at the exact sequence

0 −→ Ωp(s− d
j
)/(f1, . . . , fj−1)

�fj

−→ Ωp(s)/(f1, . . . , fj−1)

−→ Ωp(s)/(f1, . . . , fj
) −→ 0 .

Inductively, we obtain H
q(P

m
, Ωp(s)/(f1, . . . , fj

)) = 0 for each q < m− j.
Thus, Hq(X, Ωp(s)/(f1, . . . , fk

)) = 0 for q < n.

Let p ≤ n− dim Σ
X

. By Proposition 1.2, we have an exact sequence

0 → Ωp−1(s− d
j
)/(f , df1, . . . , dfj

)
dfj∧
−−→ Ωp(s)/(f , df1, . . . , dfj−1)

→ Ωp(s)/(f , df1, . . . , dfj
)→ 0

(again, f stands for f1, . . . , fk
).

Inductively, we get H
q(X, Ωp(s)/(f , df1, . . . , dfj

)) = 0 for q < n− p. Now
we obtain for s = 0, using the above exact sequences,

H
q(P

m
, Ωp

/(f1, . . . , fj−1)) −→ H
q(P

m
, Ωp

/(f1, . . . , fj
))

is bijective for q < m− j and injective for q = m− j,

H
q(X, Ωp

/(f , df1, . . . , dfj−1)) −→ H
q(X, Ωp

/(f , df1, . . . , dfj
))

is bijective for q < n− p and injective for q = n− p.

b) Let Kp := ker
(

Ωp
→ Ωp

/(f , df1, . . . , dfk
)
)

. By a), H
q(P

m
,K

p) vanishes for
q ≤ n− p, p ≤ n− dim Σ

X
, in particular for p + q ≤ n− dim Σ

X
. Therefore,

Hr(P
m

,K
•) = 0 for r ≤ n− dim Σ

X
, which implies our assertion.
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3 Relation to Residues

Now we turn to a projective variety X which is locally a complete intersection
of dimension n. Let Y be an effective Cartier divisor on X. Note that Σ

X
∩Y ⊂

Σ
Y
. We want to look at logarithmic differential forms on X with respect to

Y and their residues along Y :
We have an invertible sheaf O

X
(Y ) which is associated with Y . Note that

O
X

(kY ) ' O
X

(Y )k (k-th tensor power). Let i : Y ↪→ X and j : X \ Y ↪→ X

be the inclusions. The sheaf O
X

(kY ) can be regarded as a subsheaf of j∗OX\Y ,
and there is an induced mapping Ωp

X
⊗O

X
(kY )→ j∗Ω

p

X\Y
. Let Ωp

X
(kY ) be

the image of this mapping.

Lemma 3.1. Let p < n− dim Σ
X
∩ Y .

a) The canonical mapping Ωp

X
−→ j∗Ω

p

X\Y
is injective.

b) The canonical mapping Ωp

X
⊗O

X
(kY ) −→ Ωp

X
(kY ) is bijective.

Proof. a) Let U be an open Stein neighbourhood of x. Then we have

H
0(U, Ωp

X
) H

0(U \ Y, Ωp

X
)

H
0(U \ Σ

X
∩ Y, Ωp

X
)

For p < n− dim Σ
X
∩ Y , the left vertical is injective, because of Theorem 1.1

and 1.3, as well as the diagonal arrow, so the upper horizontal, too.

b) The surjectivity is clear. If U is an open Stein neighbourhood of x, we
have:

H0(U, Ωp

X
⊗O(kY ))) H

0(U, Ωp

X
(kY ))

H
0(U \ Σ

X
∩ Y, Ωp

X
⊗O(kY ))) H

0(U \ Σ
X
∩ Y, Ωp

X
(kY ))

For p < n− dim ΣX
∩ Y , the left vertical is injective, because of Theorem 1.1

and 1.3. The lower horizontal is injective, so the upper one, too.

So, we can describe Ωp

X
(kY ) as the sheaf of p-forms which are holomorphic

on X \Y and have at most a pole of order k along Y if k > 0 resp. which are
holomorphic on X and vanish along Y of order at least −k if k < 0.

Now we can define homomorphisms λ
Y

: Ωp−1

Y
→ Ωp

X
(Y )|

Y
as follows,

where |
Y

denotes the analytical restriction to Y :
The sheaf O

X
(−Y ) is locally free; let U be a Zariski open subset of X such

that O
X

(−Y )|
U
⊂ O

U
is generated by a function f . Then the homomorphism

∧
df

f
: Ωp−1

Y
|
Y ∩U
−→ Ωp

X
(Y )|

Y ∩U
is independent of the choice of f . Therefore,

we get the desired homomorphism λ
Y
.

By the de Rham lemma (Proposition 1.2 a), we get:
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Lemma 3.2. For p < n− dim Σ
Y
, λ

Y
: Ωp−1

Y
−→ Ωp

X
(Y )|

Y
is injective.

On the other hand, we may look at the sheaf Ωp

X
(log Y ) of logarithmic p-forms

on X along Y . We have a mapping φ : Ωp

X
(log Y )→ i∗(Ω

p

X
(Y )|

Y
), the image

coincides with the image of λ
Y
, so we can define Res : Ωp

X
(log Y ) −→ i∗Ω

p−1

Y

by φ(ω) = λ
Y
(Res ω) (residue homomorphism) as soon as p < n− dim Σ

Y
.

Lemma 3.3. For p < n− dim Σ
Y
, the following sequences are exact:

a) 0 −→ Ωp−1

Y
⊗O

X
(−Y )|

Y

λY
−→ Ωp

X
|
Y
−→ Ωp

Y
−→ 0,

b) 0 −→ Ωp

X
−→ Ωp

X
(log Y )

Res

−→ i∗Ω
p−1

Y
−→ 0.

Note that indeed the first mapping in b) is injective, as can be seen from the
commutative diagram

H0(U, Ωp

X
) H0(U, Ωp

X
(log Y ))

H
0(U \ Σ ∩ Y, Ωp

X
) H

0(U \ Σ ∩ Y, Ωp

X
(log Y ))

where U is a Stein neighbourhood of some point in X. See the proof of Lemma
3.1.

4 A Generalized Akizuki-Nakano Theorem

We want to study the cohomology of differential forms on a projective variety
which is only locally a complete intersection. Here a theorem of Lefschetz
type is useful which will be proved later on. A prerequisite is a generalization
of the theorem of Akizuki-Nakano which will be proved in this section.

Let X be a complex projective variety and Σ := Σ
X

its critical locus.
Recall that the classical Akizuki-Nakano (or Kodaira-Nakano) theo-

rem says the following ([1], [11, p. 155]): Let X be a smooth complex pro-

jective variety of pure dimension n, F an ample line bundle on X, then

Hq(X, Ωp

X
⊗F

−1) = 0 for p + q < n.

First, we can prove the following generalization, using results which are
already known from the literature: Let X be a complex projective variety
which is locally a complete intersection of dimension n, F an ample line
bundle on X. Then Hq(X, Ωp

X
⊗ F

−1) = 0 for p + q < n− dim Σ− 1.
This can be proved in the following way: First, there is an Akizuki-Nakano

theorem for non-complete algebraic manifolds which implies that

H
q(X \ Σ, Ωp

X
⊗F

−1) = 0 for p + q < n− dim Σ− 1
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see [18, Theorem I] or [9, Cor. 6.15]. By Scheja’s theorem (Theorem 1.3) and
Theorem 1.1, we know that

H
q

Σ
(X, Ωp

X
⊗ F

−1) = 0 for p + q ≤ n− dim Σ− 1 .

This implies our assertion.
But, we want to show that we can admit p + q < n− dim Σ. First, we

want to prove that the classical Akizuki-Nakano theorem still holds if X is a
local complete intersection with isolated singularities, at least if F admits a
non-trivial section which has a smooth divisor. Here we will make use of the
following topological Lefschetz theorem:

Theorem 4.1. (see [14, Th. 1.1.1]) Suppose that X is a projective variety

of pure dimension n with isolated singularities, Y a smooth hypersurface in

X such that X \ Y is affine. Then the mapping H r(X \ Σ; C)→ H
r(Y ; C) is

bijective for r < n− 1 and injective for r = n− 1.

Theorem 4.2. Let X be a complex projective variety which is locally a com-

plete intersection of dimension n, F an ample line bundle on X which admits

a section τ which corresponds to a smooth divisor Y . Assume that X has only

isolated singularities. Then Hq(X, Ωp

X
⊗F

−1) = 0 for p + q < n.

Proof. Note that the multiplication by τ yields an isomorphism O
X

(Y ) ' F .
So we assume F = O

X
(Y ). By Lemma 3.1, Ωp

X
⊗F

−1
' Ωp

X
(−Y ).

Let π : X̃ −→ X a resolution of singularities such that Σ̃ := π−1(Σ) is a
divisor with normal crossings. Look at the mappings

H
q(X, Ωp

X
) −→ H

q(X̃, Ωp

X̃

(log Σ̃)) −→ H
q(U, Ωp

X
) −→ H

q(Y, Ωp

Y
) .

Here, U denotes a closed neighbourhood of Y in X whose complement is
Stein, and Ω•

X̃

(log Σ̃) is the logarithmic de Rham complex, see [7].
We may assume that p < n. By Theorem 1.1, depth Ωp

X
≥ n− p, which

implies that Hq

c
(X \ U, Ωp

X
) = 0 for q < n − p, see [4, I Theorem 3.6]. So,

Hq(X, Ωp

X
)→ H

q(U, Ωp

X
) is bijective for q < n − p − 1 and injective for q =

n− p− 1.
Now, Hr(X̃ \ Σ̃; C) ' H

r(X \ Σ; C), and H
r(X \ Σ; C)→ H

r(Y ; C) is
bijective for r < n− 1 and injective for r = n− 1, by Theorem 4.1, since
X \ Y is affine; see [17, Prop. II 2.1]. The same holds if we pass to Grp

F
,

where F denotes the canonical Hodge filtration. Now,

Grp

F
H

p+q(X̃ \ Σ̃; C) ' H
q(X̃, Ωp

X̃

(log Σ̃)) ,

and Grp

F
H

p+q(Y ; C) ' H
q(Y, Ωp

Y
). Thus, the mapping

H
q(X̃, Ωp

X̃

(log Σ̃)) −→ H
q(Y, Ωp

Y
)
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is bijective for q < n − p − 1 and injective for q = n − p − 1. It follows
that Hq(X, Ωp

X
)→ H

q(Y, Ωp

Y
) is bijective for q < n− p− 1 and injective for

q = n− p− 1.
Now, we consider the mappings

H
q(X, Ωp

X
) −→ H

q(Y, Ωp

X
|
Y
) −→ H

q(Y, Ωp

Y
) .

Look at the exact sequence (see Lemma 3.3 a)

0 −→ Ωp−1

Y
⊗O

X
(−Y )|

Y

λY
−→ Ωp

X
|
Y
−→ Ωp

Y
−→ 0 .

Now Y is smooth of dimension n− 1, and F|
Y

is ample, too. By the classical
Akizuki-Nakano theorem, we have Hq(Y, Ωp−1

Y
⊗ O

X
(−Y )|

Y
) = 0 for q <

(n − 1) − (p − 1) = n − p, because O
X

(−Y ) ' F−1 and F−1
|
Y

is ample.
So Hq(X, Ωp

X
|
Y
) → H

q(Y, Ωp

Y
) is bijective, q < n − p − 1, and injective,

q = n− p− 1. Altogether, we get that Hq(X, Ωp

X
)→ H

q(Y, Ωp

X
|
Y
) is bijective

for q < n− p− 1 and injective for q = n− p− 1, i.e. H q(X, Ωp

X
(−Y )) = 0 for

q < n− p, because of the exact sequence

0 −→ Ωp

X
(−Y ) −→ Ωp

X
−→ Ωp

X
|
Y
−→ 0 .

Next, we want to treat the case where X may have non-isolated singularities:

Proof of Theorem 0.1. Induction on s := dim Σ. We may assume s < n. Let
us treat the induction step, i.e. prove the theorem for dim Σ = s (s ≥ 0)
under the hypothesis that it is true if dim Σ < s:

a) First, let us assume that F admits a section which corresponds to a
divisor Y which is smooth outside Y ∩ Σ, so F ' O

X
(Y ), and such that

dim Y ∩ Σ = s− 1 if s > 0, resp. Y ∩ Σ = ∅ if s = 0. The case s = 0 being
handled in Theorem 4.2, we assume s > 0.

We have depth Ωp

X
≥ n− p for p ≤ n− s. Hence, H

q(X, Ωp

X
⊗ F

−k) = 0
for k � 0, q < n− p, p ≤ n− s, so for q ≤ n− p− s. See [10, Exp. XII Cor.
1.4] or [4, IV Cor. 3.3].

We want to show by induction on −k that H
q(X, Ωp

X
⊗F

−k) vanishes for
k ≥ 1. So, let k ≥ 1 be given. Note that F−k

' O
X

(−kY ) ⊃ O
X

((−k − 1)Y ).
Moreover, Ωp

X
⊗O

X
(−kY ) ' Ωp

X
(−kY ) by Lemma 3.1. Thus, we get an exact

sequence

0 −→ Ωp

X
⊗O((−k − 1)Y ) −→ Ωp

X
⊗O(−kY ) −→ Ωp

X
⊗O(−kY )|

Y
−→ 0 ,

which corresponds to the exact sequence

0 −→ Ωp

X
((−k − 1)Y ) −→ Ωp

X
(−kY ) −→ Ωp

X
(−kY )|

Y
−→ 0 .
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It remains to show H
q(Y, Ωp

X
⊗ F

−k
|
Y
) = 0 for k > 0, p + q < n− s− 1.

But by Lemma 3.3 a), we have an exact sequence

0 −→ Ωp−1

Y
⊗O

X
(−Y )|

Y
−→ Ωp

X
|
Y
−→ Ωp

Y
−→ 0 .

Since, by the induction hypothesis,

H
q(Y, Ωp

Y
⊗ (F|

Y
)−k) = H

q(Y, Ωp−1

Y
⊗O

X
(−Y )|

Y
⊗ (F|

Y
)−k) = 0 ,

H
q(Y, Ωp

X
⊗ F

−k
|
Y
) vanishes, provided that p + q < n− s.

b) Now, assume only that F is ample. Then there is an l > 0 such that F l is
very ample. We use essentially the same trick as in [19]: We may assume that
X is embedded in some P

m
and that F l = OPm

(1)|
X

. Take a general linear
form on P

m
. In this way, we find a section σ in F l such that the zero set of σ

is transverse to the regular part of the zero section of F l and dim Σ1 = s− 1
if s > 0, resp. Σ1 = ∅ if s = 0, where Σ1 := Σ ∩ {σ = 0}. Look at the cyclic
covering f : X ′

→ X of X with degree l branched along the zero locus of σ.
More precisely, X ′ := {v ∈ F | vl = σ(π(v))}. Note that X

′ is smooth outside
Σ′ = f

−1(Σ).
Now f ∗(F) admits a non-trivial section τ with τ

l = f
∗(σ), and X

′ is
locally a complete intersection; the divisor of τ is smooth outside Σ′, see [19].
Furthermore, f ∗

F is ample. So, by the special case which is already proved,
Hq(X ′

, Ωp

X
′ ⊗ f

∗(F)−1) = 0 for q < n− p− s. Let

Σ′
1

:= Σ′
∩ {σ = 0} ,

then dim Σ′
1

= s− 1 if s > 0, resp. Σ′
1

= ∅ if s = 0. For p ≤ n− s, we have
depth Ωp

X
′ ≥ n− p, so H

q(X ′
\ Σ′

1
, Ωp

X
′ ⊗ f

∗(F)−1) = 0 for q < n− p− s, by
Theorem 1.3 (the case s = 0 is obvious). By the adjunction formula,

H
q(X ′

\ Σ′
1
, Ωp

X
′ ⊗ f

∗(F)−1) = H
q(X \ Σ1, f∗(Ω

p

X
′ ⊗ f

∗(F)−1))

= H
q(X \ Σ1, f∗(Ω

p

X
′)⊗F

−1) .

Now, the Galois group of the covering f : X
′
→ X acts on f∗Ω

p

X
′ . Outside Σ1,

Ωp

X
coincides with the invariant part of f∗Ω

p

X
′ . So we get

0 = H
q(X \ Σ1, Ω

p

X
⊗F

−1) = H
q(X, Ωp

X
⊗ F

−1) ,

using Scheja’s Theorem 1.3.

5 A Preliminary Lefschetz Theorem for Dif-

ferential Forms

Let X be a complex projective variety which is locally a complete intersection
of dimension n and Σ

X
its singular locus. Let Y be an effective Cartier divisor

in X such that O
X

(Y ) is ample.
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Lemma 5.1. a) The mapping H
q(X, Ωp

X
) → H

q(Y, Ωp

X
|
Y
) is bijective for

q < n− p− dim Σ
X
− 1 and injective for q = n− p− dim Σ

X
− 1.

b) The mapping H
q(Y, Ωp

X
|
Y
) → H

q(Y, Ωp

Y
) is bijective for q < n − p −

dim Σ
Y
− 1 and injective for q = n− p− dim Σ

Y
− 1.

Proof. a) We may assume p < n− dim Σ
X

. We have an exact sequence:

0 −→ Ωp

X
(−Y ) −→ Ωp

X
−→ Ωp

X
|
Y
−→ 0 .

By Lemma 3.1, Ωp

X
⊗O

X
(−Y ) ' Ωp

X
(−Y ). Thus, by the generalized Akizuki-

Nakano Theorem 0.1, Hq(X, Ωp

X
(−Y )) = 0 for q < n− p− dim Σ

X
. So, we

get the desired assertion.

b) We may assume that p < n− dim Σ
Y
. By Lemma 3.3 a), we have an exact

sequence

0 −→ Ωp−1

Y
⊗O

X
(−Y )|

Y
−→ Ωp

X
|
Y
−→ Ωp

Y
−→ 0 .

By the generalized Akizuki-Nakano Theorem 0.1, H
q(Y, Ωp−1

Y
⊗O

X
(−Y )|

Y
)

vanishes for q < n− p− dim Σ
Y
, which proves the assertion.

Remark 5.2. Using the same method of proof we can show that

H
q(Y, Ωp

X
|
Y
⊗ F

−r) = 0 , r > 0 ,

provided that q < n− p− dim ΣX
− 1, if F is ample.

Corollary 5.3. Let Σ := Σ
X
∪ Σ

Y
.

a) The mapping H
q(X, Ωp

X
)→ H

q(Y, Ωp

Y
) is bijective for q < n − p −

dim Σ− 1 and injective for q = n− p− dim Σ− 1.

b) The mapping Hr(X, Ω•
X

)→ Hr(Y, Ω•
Y
) is bijective for r < n−dim Σ−1,

and injective for r = n− dim Σ− 1.

Proof. a) follows from Lemma 5.1. For b), put Kp := ker(Ωp

X
→ i∗Ω

p

Y
), where

i : Y ↪→ X denotes the inclusion. Then, a) implies that Hq(X,K
p) = 0 for

p + q < n− dim Σ. So, Hr(X,K
•) = 0, r < n− dim Σ, which proves the as-

sertion.

For a modified version, see Theorem 7.1.

Remark 5.4. (Theorem 2.1 revisited) As in Section 2, let X be the subvariety
of P

m
defined by f1 = . . . = f

k
= 0, where f

j
is a homogeneous polynomial of

degree d
j
. Let dim X = n := m− k, let Σ be the singular locus of X, and let

(c1, . . . , ck
) be a non-zero regular value of (f1, . . . , fk

) : Cm+1
→ Ck. Put

F
j
(z0, . . . , zm+1) := f

j
(z0, . . . , zm

)− c
j
z

dj

m+1
, j = 1, . . . , k ,
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let Z
j

be the subvariety of P
m+1 defined by F1 = . . . = F

j
= 0, and let Σ

j

be the singular locus of Z
j
, j = 1, . . . , k. Then Σ

k
' Σ by the choice of

(c1, . . . , ck
), so dim Σ

j
≤ dim Σ + k − j. By Corollary 5.3 a), we know that

the arrows

H
q(P

m+1, Ω
p

Pm+1
)→ H

q(Z1, Ω
p

Z1
)→ . . .→ H

q(Z
k
, Ωp

Zk
)→ H

q(X, Ωp

X
)

are bijective for q < n− p− dim Σ and injective for q = n− p− dim Σ.
Since Hq(P

m+1, Ω
p

Pm+1
) ' H

q(P
m
, Ωp

Pm
) for q ≤ m we obtain that the

mapping Hq(P
m
, Ωp

Pm
)→ H

q(X, Ωp

X
) is bijective for q < n− p− dim Σ and

injective for q = n− p− dim Σ. So we get a weakened version of Theorem
2.1 a). Similarly, we obtain Theorem 2.1 b).

We can deduce Theorem 0.1 from Corollary 5.3. In fact, practically we did so
at the end of the proof of Theorem 4.2 for dim Σ = 0.

Induction on s = dim Σ. We can assume that F admits a non-trivial sec-
tion τ which corresponds to a divisor Y which is smooth outside the singular
locus of X and which satisfies dim Σ

Y
= s− 1 if s > 0, resp. Σ

Y
= ∅ if s = 0.

We may assume p < n− s. By Lemma 3.3 a) we have an exact sequence

0 −→ Ωp−1

Y
⊗O

X
(−Y )|

Y
−→ Ωp

X
|
Y
−→ Ωp

Y
−→ 0 .

By induction hypothesis, H
q(Y, Ωp−1

Y
⊗O

X
(−Y )|

Y
) = 0, q < n−p−s, so the

mapping Hq(Y, Ωp

X
|
Y
) −→ H

q(Y, Ωp

Y
) is bijective for q < n − p − s − 1 and

injective for q = n− p− s− 1.
By Corollary 5.3 a), we have that the composition of the mappings

H
q(X, Ωp

X
) −→ H

q(Y, Ωp

X
|
Y
) −→ H

q(Y, Ωp

Y
)

is bijective for q < n− p− s− 1 and injective for q = n− p− s− 1. Alto-
gether, we get that the mapping Hq(X, Ωp

X
)→ H

q(X, Ωp

X
|
Y
) is bijective for

q < n− p− s− 1 and injective for q = n− p− s− 1. Starting from the exact
sequence

0 −→ Ωp

X
(−Y ) −→ Ωp

X
−→ Ωp

X
|
Y
−→ 0 ,

we see that Hq(X, Ωp

X
(−Y )) = 0, q < n− p− s, which implies our assertion.

6 De Rham Cohomology and Singular Coho-

mology

If X is a complex manifold the holomorphic Poincaré lemma implies that the
de Rham cohomology and the singular cohomology coincide:

H
r(X; C) ' Hr(X, Ω•

X
) .
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Note that H
r(X; C) ' H

r(X, C
X

), where C
X

is the constant sheaf of complex
numbers on X.

We will show that a weaker comparison theorem holds for local complete
intersections. It yields a bridge between the Lefschetz theorem for de Rham
cohomology and a corresponding one for singular cohomology and allows to
understand the Lefschetz theorem for de Rham cohomology from a geometric
point of view.

We will first make use of a local topological Lefschetz theorem:

Theorem 6.1. Let X be the representative of a germ of a complete intersec-

tion of dimension n at 0 in Cm, Z a closed analytic subset of X. Replace X

by its intersection by a small open ball around 0. Then H̃r(X \Z; C) = 0 for

r < n− dim Z − 1.

Proof. See [15, Theorem 1.4].

Theorem 6.2. Let X be a complex space which is locally a complete intersec-

tion of dimension n, Σ the singular locus. Then the mapping Hk(X, C
X

) −→
Hk(X, Ω•

X
) is bijective for k < n− dim Σ.

Note that the mapping H
k(X, C

X
)→ Hk(X, Ω•

X
) is always injective by the

theorem of Bloom-Herrera [2].

Proof. By Scheja’s Theorem 1.3 and Theorem 1.1, we have: H
q

Σ
(X, Ωp

X
) = 0

for q < n− p− dim Σ, so Hk

Σ
(X, Ω•

X
) = 0 for k < n− dim Σ. This means that

the mapping Hk(X, Ω•
X

)→ Hk(X \ Σ, Ω•
X

) is bijective for k < n− dim Σ− 1
and injective for k = n− dim Σ− 1.

Now, H
k(X \ Σ, C

X
) ' Hk(X \ Σ, Ω•

X
) by the holomorphic Poincaré

lemma.
On the other hand, if U is a suitable neighbourhood of x ∈ X, the maping

Hk(U, C
X

)→ H
k(U \ Σ, C

X
) is bijective for k < n− dim Σ− 1 and injective

for k = n− dim Σ− 1, by Theorem 6.1.
So, Hk

Σ
(C

X
) = 0, k < n − dim Σ, which implies that H

k

Σ
(X, C

X
) = 0,

k < n−dim Σ. This means that Hk(X, C
X

)→ H
k(X \Σ, C

X
) is bijective for

k < n− dim Σ− 1 and injective for k = n− dim Σ− 1.
Finally, we look at the commutative diagram

H
k(X, C

X
) H

k(X \ Σ, C
X

)

Hk(X, Ω•
X

) Hk(X \ Σ, Ω•
X

) .

For k < n− dim Σ− 1, the horizontals and the right vertical are bijective, so
the left vertical, too. But this is not sufficient for our purpose. Thus, we argue
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in a different way, using the theorem of Bloom-Herrera instead of Theorem
6.1, as in the proof of [12, Satz 4.4]:

Suppose that k < n−dim Σ. Then the lower horizontal is injective and the
right vertical is bijective. Furthermore, by [2], the left vertical is injective, and
there is a natural splitting r : Hk(X, Ω•

X
) → H

k(X, C
X

) of the mapping i :
Hk(X, C

X
)→ Hk(X, Ω•

X
), i.e. r ◦ i = id. Let c ∈ Hk(X, Ω•

X
). Then c− i(r(c))

is mapped onto 0 ∈ Hk(X \ Σ, Ω•
X

) since the right vertical is bijective. By
the injectivity of the lower horizontal we get that c− i(r(c)) = 0, so the left
vertical is surjective, hence bijective. Altogether this implies our theorem.

Corollary 6.3. (cf. [12, Satz 4.4]) Let X be as in Theorem 6.2. Then the

complex

0 −→ C
X
−→ Ω0

X
−→ . . . −→ Ωn−dimΣ

X

is exact.

Proof. Let F • be the complex 0→ C
X
→ Ω0

X
→ Ω1

X
→ . . . so that F 0 = C

X
.

Let G be the following decreasing filtration of this complex: G
k
F

• = F• for
k < 0, G0F

p := 0 for p ≤ 0, G0F
p := Ωp−1

X
for p > 0, and G

k
F

• := 0 for
k > 0. Then the long exact cohomology sequence for

0 −→ G0/G1 −→ G−1/G1 −→ G−1/G0 −→ 0

can be identified with

−→ H
q(F•) −→ Hq(C•) −→ Hq(Ω•

X
) −→ Hq+1(F•) −→ ,

where C• is the complex with C0 = C
X

and Cp = 0 for p 6= 0. Let U be an
open contractible Stein neighbourhood of x ∈ X. Now apply Theorem 6.2
and the following remark to U instead of X.

Remark 6.4. a) Corollary 6.3 implies Theorem 6.1 in the case Z = Σ, see
[12, Bemerkung after Satz 4.4].

b) From Corollary 6.3, we may deduce Theorem 6.2 again: It is sufficient to
show that Hk(X,F

•) = 0, k ≤ n − dim Σ, which follows from Hk(F•) = 0,
k ≤ n− dim Σ.

In the proof of the following theorem we will make use of the global Lefschetz
theorem for local complete intersections:

Theorem 6.5. (see [13] or [15, Theorem 3.4.1]) Let X be a projective variety

which is locally a complete intersection of dimension n, Y a hypersurface in

X, X \ Y Stein. Then the mapping Hr(X; C) −→ H
r(Y ; C) is bijective for

r < n− 1 and injective for r = n− 1.
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Remember that H
r(X; C) carries a canonical mixed Hodge structure, see [8].

Let F be the corresponding Hodge filtration.

Theorem 6.6. Let X be a complex projective variety which is locally a com-

plete intersection of dimension n, Σ the singular locus. Then we have:

a) For k < n − dim Σ, the canonical mixed Hodge structure on Hk(X; C)
is pure of weight k,

b) Hq(X, Ωp

X
) ' Grp

F
H

p+q(X; C) for p + q < n− dim Σ.

Proof. Induction on n = dim X. Let X be contained in P
m

. Induction step
(from n − 1 to n): If X is smooth the statement is well-known. Otherwise,
take a general hyperplane L in P

m
. Put Y := X∩L. By the Lefschetz theorem

(Theorem 6.5), Hk(X; C) −→ H
k(Y ; C) is injective for k < n and bijective

for k < n − 1. Let k < n− dim Σ. The mixed Hodge structure on Hk(Y ; C)
is pure of weight k: this is obvious for dim Σ = 0 because Y is then smooth,
for dim Σ > 0 it is true because of the induction hypothesis. So, the mixed
Hodge strucure on Hk(X; C) is pure of weight k, too. This implies a).

Now, let (Ω
•

X
, F ) be the filtered de Rham complex in the sense of du

Bois [6]. It is uniquely defined in the derived category of filtered complexes
D

diff
(X). Note that there is a morphism (Ω•

X
, σ)→ (Ω

•

X
, F ) which is a quasi-

isomorphism if X is smooth, see [6, 4.1]; here σ denotes the stupid filtra-
tion (filtration bête). Furthermore, the associated spectral sequence with
E1 terms E

pq

1
(X, Ω

•

X
) = Hq(X, Grp

F
Ω

•

X
[p]) degenerates at E1, and we have

Epq

∞(X, Ω
•

X
) = Grp

F
H

p+q(X; C) where the latter is taken in the sense of
Deligne’s theory [8], see [6, Th. 4.5].

We have also a spectral sequence with E
pq

1
(X, Ω•

X
) := H

q(X, Ωp

X
). So, we

get a commutative diagram of E1 terms:

H
q(X, Ωp

X
) H

q(Y, Ωp

Y
)

Hq(X, Grp

F
Ω

•

X
[p]) Hq(Y, Grp

F
Ω

•

Y
[p])

Assume p + q < n− dim Σ. By induction hypothesis the right vertical arrow
is an isomorphism, and by Corollary 5.3 a) the upper horizontal is injective.
So the left vertical is injective, too.

Note that we always have dim Epq

∞ ≤ dim E
pq

1
. For k < n − dim Σ, we

have Hk(X; C) ' Hk(X, Ω•
X

), so

dim H
k(X; C) =

∑

p+q=k

dim E
pq

∞(X, Ω•
X

) ≤
∑

p+q=k

dim H
q(X, Ωp

X
)

≤

∑

p+q=k

dim Hq(X, Grp

F
Ω

•

X
[p]) = dim H

k(X; C) ,

which implies our assertion.
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Note that Theorems 6.2 and 6.6 imply Theorem 0.2.

Remark 6.7. Under the hypothesis of Theorem 6.6, we get for k = p + q <

n− dim Σ− 1: Hk(X; C) ' H
k(X \ Σ; C) and H

q(X, Ωp

X
) ' H

q(X \ Σ, Ωp

X
),

see the proof of Theorem 6.2. Consequently, we have E
pq

1
= E

pq

∞ for the Hodge
spectral sequence on X \ Σ, which fits to [3, Theorem 6.1], see also [9, Cor.
6.14] . In fact, we have Grp

F
H

k(X \Σ; C) ' H
q(X \Σ, Ωp

X
) for the canonical

mixed Hodge structure, this follows from [9], loc.cit.
Furthermore, the mixed Hodge structure on Hk(X\Σ; C) is pure of weight

k, by Theorem 6.6. This can also be seen as follows: GrW

q
H

k(X \ Σ; C) = 0
for q < k because X \ Σ is smooth, as well as for q > k because Hk(X; C) '
Hk(X \ Σ; C) and X is compact.

7 A Lefschetz Theorem for Differential Forms

on Local Complete Intersections

Now let us discuss Corollary 5.3 again. Let X be a complex projective variety
which is locally a complete intersection of dimension n, Y an effective Cartier
divisor in X such that X \ Y is Stein. We get the following generalization of
Corollary 5.3:

Theorem 7.1. a) The mapping Hr(X, Ω•
X

)→ Hr(Y, Ω•
Y
) is bijective for

r < n− dim Σ
Y
− 1 and injective for r ≤ n− dim Σ

X
− 1.

b) The mapping H
q(X, Ωp

X
)→ H

q(Y, Ωp

Y
) is bijective for p + q < n −

dim Σ
Y
− 1, and injective for p + q ≤ n− dim Σ

X
− 1.

Proof. a) Let us look at the following commutative diagram:

H
k(X, C

X
) H

k(Y, C
Y
)

Hk(X, Ω•
X

) Hk(Y, Ω•
Y
) .

The upper horizontal is bijective for k < n − 1 and injective for k = n − 1,
by Lefschetz (Theorem 6.5). By Theorem 6.2, the left vertical is bijective for
k < n− dim Σ

X
, the right one is bijective for k < n− dim Σ

Y
− 1; note that

the right one is always injective by the theorem of Bloom and Herrera. This
implies our assertion. Note that dim Σ

X
≤ dim Σ

Y
+ 1.

b) We use the same diagram as above. Note that the assumption implies
that the vertical arrows are bijective for k = p + q < n− dim Σ

Y
− 1. Now,

apply Theorem 6.6. In this way, we get the first statement. As for injectivity,
note that if Hq(X, Ωp

X
)→ H

q(Y, Ωp

Y
) fails to be injective for some (p, q) with

p + q ≤ n− dim Σ
X
− 1 as above, the rank of Hk(X, Ω•

X
)→ Hk(Y, Ω•

Y
) would

be less than dim Hk(X, Ω•
X

) for p + q = k, which contradicts a).
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In particular, we obtain Theorem 0.3. Note that, in fact, the hypotheses of
Theorem 0.3 imply that Y is an effective Cartier divisor on X.

Remark 7.2. From Theorem 7.1 we may deduce Corollary 5.3. As indicated
in Section 5, we can therefore deduce the theorem of Akizuki-Nakano (The-
orem 0.1). Unfortunately, we have already used the results of Section 4 and
Section 5 in the proof of Theorem 6.6, the reader is invited to look for a
different argument.

We can now derive Theorem 2.1 b) from Theorem 7.1 in a simpler way than
at the end of Section 5, using the spaces X ∩ {f1 = . . . = f

j
= 0}.

8 Logarithmic de Rham Cohomology and the

Gysin Sequence

Let X be a complex projective variety which is locally a complete intersection
of dimension n, Σ the singular locus of X, Y an effective Cartier divisor on
X such that the singular locus of Y is Y ∩ Σ, dim Y ∩ Σ = dim Σ− 1.

In Section 3, we have introduced mappings Res : Ωp

X
(log Y )→ i∗Ω

p−1

Y

for p ≤ n− dim Σ, where i : Y ↪→ X is the inclusion. If X, Y are smooth we
get a corresponding homomorphism Res : Ω•

X
(log Y )→ i∗Ω

•−1

Y
, which induces

mappings

Res : Hk(X, Ω•
X

(log Y )) −→ Hk−1(Y, Ω•
Y
) .

In general, we define the latter differently and only for k < n− dim Σ: in such
a way that the diagram

Hk(X, Ω•
X

(log Y )) Hk−1(Y, Ω•
Y
)

Hk(X \ Σ, Ω•
X

(log Y )) Hk−1(Y \ Σ, Ω•
Y
)

is commutative. Note that the right vertical is bijective, see the proof of
Theorem 6.2.

Theorem 8.1. We have long exact Gysin sequences:

a)
. . . −→ H

q(X, Ωp

X
) −→ H

q(X, Ωp

X
(log Y ))

Res

−→ H
q(Y, Ωp−1

Y
)

−→ Hq+1(X, Ωp

X
) −→ . . . for p ≤ n− dim Σ ,

b)
. . . −→ Hk(X, Ω•

X
) −→ Hk(X, Ω•

X
(log Y ))

Res
−→ Hk−1(Y, Ω•

Y
)

−→ Hk+1(X, Ω•
X

) −→ . . . −→ Hn−dim Σ−2(Y, Ω•
Y
) .
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Proof. a) follows from Lemma 3.3 b). For b), put s := n− dim Σ + 1, and let
F • be the stupid filtration. By Lemma 3.3 b), we have an exact sequence

0→ Ω•
X

/F
s

→ Ω•
X

(log Y )/F s
Res
−−→ i∗Ω

•−1

Y
/F

s

→ 0 ,

where i : Y ↪→ X is the inclusion. Now, we look at the corresponding long ex-
act hypercohomology sequence. Note that Hk(X, F

sΩ•
X

) = 0, k ≤ n− dim Σ,
so Hk(X, Ω•

X
) ' Hk(X, Ω•

X
/F

s) for k < n− dim Σ. Similarly, we can argue
for the other terms.

Of course, Theorem 8.1 implies Theorem 0.4.

Theorem 8.2. There is a long exact Gysin sequence

. . . −→ H
k(X; C) −→ H

k(X \ Y ; C) −→ H
k−1(Y ; C)

−→ H
k+1(X; C) −→ . . . −→ H

n−dimΣ−2(Y ; C) .

Proof. We start from the long exact cohomology sequence for the pair
(X \ Y ∩ Σ, X \ Y ). By excision, we have

H
k+1(X \ Y ∩ Σ, X \ Y ; C) ' H

k+1(X \ Σ, X \ Y ∪ Σ; C) ,

H
k+1(X \ Σ, X \ Y ∪ Σ; C) ' H

k−1(Y \ Σ; C) ' H
k−1(Y ; C) ,

and H
k(X; C) ' H

k(X \ Y ∩ Σ; C) for k < n − dim Σ, by Theorem 6.1. See
the proof of Theorem 6.2.

Remember that H
k(X \ Y ; C) ' Hk(X, Ω•

X
(log Y )) if X is smooth. In our

case, we can derive:

Theorem 8.3. H
k(X \ Y ; C) ' Hk(X \ Y, Ω•

X\Y ) ' Hk(X, Ω•
X

(log Y )) for

k < n− dim Σ.

Proof. Let k < n− dim Σ, s := n− dim Σ + 1. By Theorem 6.2, we have

H
k(X \ Y ; C) ' Hk(X \ Y, Ω•

X\Y ) ' Hk(X \ Y ∩ Σ, j∗Ω
•
X\Y ) ,

where j : X \ Y ↪→ X \ Y ∩ Σ is the inclusion. Note that j is affine.
As in the proof of Theorem 8.1, we have

Hk(X \ Y ∩ Σ, j∗Ω
•
X\Y ) ' Hk(X \ Y ∩ Σ, j∗Ω

•
X\Y /F

s)

Now we want to show that

Hk(X \ Y ∩ Σ, j∗Ω
•
X\Y /F

s) ' Hk(X \ Y ∩ Σ, Ω•
X\Y ∩Σ

(log Y \ Σ)/F s) .
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We have a commutative diagram with exact columns:

0 0

Ω•
X\Y ∩Σ

/F
s Ω•

X\Y ∩Σ
/F

s

Ω•
X\Y ∩Σ

(log Y \ Σ)/F s
j∗Ω

•
X\Y

/F
s

(Ω•
X\Y ∩Σ

(log Y \ Σ)/Ω•
X\Y ∩Σ

)/F s (j∗Ω
•
X\Y /Ω•

X\Y ∩Σ
)/F s

0 0 .

It is sufficient to show that Hk(X \Y ∩Σ, (Ω•
X\Y ∩Σ

(log Y \Σ)/Ω•
X\Y ∩Σ

)/F s) '

Hk(X \ Y ∩ Σ, (j∗Ω
•
X\Y

/Ω•
X\Y ∩Σ

)/F s), or that

Hk(X \ Y ∩ Σ, Ω•
X\Y ∩Σ

(log Y \ Σ)/Ω•
X\Y ∩Σ

)

' Hk(X \ Y ∩ Σ, j∗Ω
•
X\Y /Ω•

X\Y ∩Σ
) .

But the sheaves in question are concentrated on Y
′ = Y \ Σ, so we have a

commutative diagram

Hk(X \ Y ∩Σ, Ω•
X\Y ∩Σ

(log Y
′)/Ω•

X\Y ∩Σ
) Hk(X \ Y ∩ Σ, j∗Ω

•
X\Y

/Ω•
X\Y ∩Σ

)

Hk(X \ Σ, Ω•
X\Σ(log Y

′)/Ω•
X\Σ) Hk(X \ Σ, j

′
∗Ω

•
X\Y ∪Σ

/Ω•
X\Σ)

with bijective vertical arrows, where j
′ : X \ Y ∪ Σ ↪→ X \ Σ is the inclusion.

Hence, we must show that the lower horizontal is bijective, i.e. that

Hk(X \ Σ, Ω•
X\Σ(log Y \ Σ)/Ω•

X\Σ) ' Hk(X \ Σ, j
′
∗Ω

•
X\Y ∪Σ

/Ω•
X\Σ) .

But X \ Σ is smooth. Look at the long exact hypercohomology sequences
attached to the exact sequences

0 Ω•
X\Σ Ω•

X\Σ(log Y \ Σ) Ω•
X\Σ(log Y \ Σ)/Ω•

X\Σ 0

0 Ω•
X\Σ j

′
∗Ω

•
X\Y ∪Σ

j
′
∗Ω

•
X\Y ∪Σ

/Ω•
X\Σ 0

Note that the first two verticals yield isomorphisms for the hypercohomology
groups, so the right one, too.

Next we want to show that

Hk(X \ Y ∩ Σ, Ω•
X\Y ∩Σ

(log Y \ Σ)/F s) ' Hk(X, Ω•
X

(log Y )/F s) .
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But this is clear since depth Ωp

X
(log Y ) ≥ n− p for p ≤ n− dim Σ : note

that depth Ωp

X
≥ n− p, depth Ωp−1

Y
≥ n− p, so depth Ωp

X
(log Y ) ≥ n− p by

Lemma 3.3 b).
Finally, it is clear that Hk(X, Ω•

X
(log Y )/F s) ' Hk(X, Ω•

X
(log Y )). Alto-

gether, we conclude

H
k(X \ Y ; C) ' Hk(X \ Y ∩ Σ, j∗Ω

•
X\Y ) ' Hk(X \ Y ∩ Σ, j∗Ω

•
X\Y /F

s)

' Hk(X \ Y ∩ Σ, Ω•
X\Y ∩Σ

(log Y \ Σ)/F s)

' Hk(X, Ω•
X

(log Y )/F s) ' Hk(X, Ω•
X

(log Y )) .

Theorem 8.3 explains the relation between Theorem 8.1 and 8.2. Furthermore,
we can sharpen Theorem 8.2 and, therefore, 8.1 b) under some transversality
condition:

Theorem 8.4. Assume that Y is a tranversal section of X in the stratified

sense. Then there are long exact Gysin sequences:

. . .→ H
k(X; C) −→ H

k(X \ Y ; C) −→ H
k−1(Y ; C) −→ H

k+1(X; C) −→ . . .

and

. . . −→ Hk(X, Ω•
X

) −→ Hk(X, Ω•
X

(log Y ))
Res
−−→ Hk−1(Y, Ω•

Y
)

−→ Hk+1(X, Ω•
X

) −→ . . . −→ Hn−dim Σ(X, Ω•
X

(log Y )) .

Proof. The first exact sequence follows from the exact cohomology sequence
of the pair (X, X \ Y ) since Hk+1(X, X \ Y ; C) ' H

k−1(Y ; C).
To get the second sequence, put K := n− dim Σ. For k ≤ n− dim Σ,

we have the following commutative diagram whose upper and lower row are
exact:

. . . H
k−2(Y ; C) H

k(X; C) H
k(X \ Y ; C)

. . . Hk−2(Y, Ω•
Y
) Hk(X, Ω•

X
) Hk(X, Ω•

X
(log Y )

. . . Hk−2(Y, Ω•
Y
/F

K) Hk(X, Ω•
X

/F
K+1) Hk(X, Ω•

X
(log Y )/F K+1).

The left verticals are bijective, the others injective except maybe the vertical
at the top on the right. A diagram chase shows that the middle row can be
extended to an exact sequence.
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[7] Deligne, P.: Théorie de Hodge II. Publ. Math. IHES 40, 5–57 (1971).
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The Geometry of the Versal

Deformation

Lê Dũng Tráng

Abstract

In this paper, we give a survey on known results about the versal defor-
mation of an isolated complex hypersurface singularity. We recall the
interest in the geometry of these deformations and we give some open
problems in relation with the local topology of isolated hypersurface
singularities.

Let f : (Cn+1
, 0)→ (C, 0) be the germ at the point 0 of a complex analytic

function, also denoted by f and defined on an open neighbourhood U of 0 in
Cn+1. Assume that f has an isolated critical point at 0. Weierstrass Prepa-
ration Theorem tells us that this hypothesis is equivalent to the finiteness of
the complex dimension of the vector space

C{z0, . . . , zn
}/(∂f/∂z0, . . . , ∂f/∂zn

)

quotient of the complex algebra of convergent power series at 0 by the ideal
generated by the partial derivatives of f . We shall denote by µ this complex
dimension which is called the Milnor number of f at 0. Since f vanishes at
0, this is also equivalent to the finiteness of the complex dimension of

C{z0, . . . , zn
}/(f, ∂f/∂z0, . . . , ∂f/∂zn

).

We shall denote by τ this complex dimension and call it the Tjurina number
of f at 0.

In [19], G. Tjurina has introduced the following unfolding of f :

Φ: (Cn+1
× Cτ−1

, 0)→ (C× Cτ−1
, 0)

1991 Mathematics Subject Classification. 14B05, 14B07, 14F35, 32B30, 32G11, 32S30,
32S40, 32S55

Key words. Hypersurface singularity, monodromy, discriminant, Milnor number, funda-
mental group
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defined by

Φ(z0, . . . , zn
, λ1, . . . , λτ−1) = (F (z0, . . . , zn

, λ1, . . . , λτ−1), λ1, . . . , λτ−1) ,

with

F (z0, . . . , zn
, λ1, . . . , λτ−1) = f(z0, . . . , zn

) + λ1s1 + . . .+ λ
τ−1sτ−1

where the images of 1, s1, . . . , sτ−1 in

C{z0, . . . , zn
}/(f, ∂f/∂z0, . . . , ∂f/∂zn

)

give a complex basis of this finite dimensional vector space. G. Tjurina
proved that such an unfolding is a mini-versal deformation of the hyper-
surface singularity (f−1(0), 0) with base space of smallest dimension, i.e. if
ϕ : (X, 0)→ (S, 0) is a deformation of (f−1(0), 0), there is a complex analytic
map σ : (S, 0)→ (C× Cτ−1

, 0) such that ϕ is the pull-back by σ of Φ and the
derivative of σ at 0 is uniquely defined.

A deformation of the hypersurface singularity (f−1(0), 0) is called a versal
deformation of (f−1(0), 0), when any deformation of (f−1(0), 0) is obtained
by pull-back from the given versal deformation. A versal deformation of f is a
mini-versal deformation of f if its base space has the dimension τ . Any versal
deformation of a hypersurface singularity Ψ : CN

→ CP , is isomorphic to a
mini-versal deformation Φ× Id : Cn+τ

× CN−n−τ
→ Cτ

× CN−n−τ , extended
by a trivial deformation.

In particular the function f itself is a deformation of the hypersurface
(f−1(0), 0) and is obviously obtained as a pull-back from Φ.

The singularity (f−1(0), 0) might have several mini-versal deformations,
but there are all isomorphic.

In this survey we shall show how much one can recover of the singularity
of (f−1(0), 0) from the geometry of a mini-versal deformation.

1 On the Local Topology of Isolated Hyper-

surface Singularities

In his book [12], J. Milnor has given most of the basic features which describe
the local topology of an isolated hypersurface singularities. As in the intro-
duction we consider a germ f at 0 of a complex analytic function with an
isolated singularity at 0. Whenever there will be no confusion, we shall still
denote by f a representative of this germ in a small neighbourhood U of 0.
We denote by X the hypersurface f−1(0).
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1.1 Local Conic Structure

Let B
ε
(0) the real (2n+2)-ball of Cn+1 centered at 0 with radius ε. Let S

ε
(0)

be the real (2n + 1)-sphere boundary of B
ε
(0). J. Milnor showed that, there

is some ε0 > 0, such that for any ε, ε0 > ε > 0, the sphere S
ε
(0) is transverse

to X in Cn+1. As a consequence, for ε0 > ε > 0, the manifolds X ∩ S
ε
(0) are

diffeomorphic to each other and one obtains (see [12, Theorem 2.10]):

Theorem 1.1. There is ε1 > 0 such that, for any ε, ε1 > ε > 0, the pair

(B
ε
(0), B

ε
(0) ∩X) is homeomorphic to the real cone from 0 on the pair

(S
ε
(0), S

ε
(0) ∩X).

Therefore, the local topology of an isolated hypersurface singularity is given
by the embedding of the local link S

ε
(0) ∩X in S

ε
(0), when ε is small enough.

The following result shows that the complement of S
ε
(0) ∩X in S

ε
(0) fibers

over the circle S1.

1.2 The Local Fibration

One of the most important properties of the local link S
ε
(0) ∩X ⊂ S

ε
(0) is

given in the (see [12, Theorem 4.8]):

Theorem 1.2. There is ε2 > 0, such that, for any ε, ε2 > ε > 0, the quotient

f/|f | induces a locally trivial smooth fibration ψ
ε

of S
ε
(0) \ S

ε
(0) ∩X over

S1. These fibrations are fiber isomorphic to each other.

In fact, this fibration can be seen in another way:

Theorem 1.3. There is ε3 > 0 such that, for any ε, ε3 > ε > 0, there exists

η
ε
> 0 such that, for any η, η

ε
> η > 0, the map ψ

ε,η
induced by f from the

intersection B
ε
(0)◦ ∩ f−1(∂D

η
(0)) of the open ball B

ε
(0)◦ with the inverse

image by f of the circle ∂D
η
(0), boundary of the disc D

η
(0), into ∂D

η
(0) is

a locally trivial smooth fibration. For these choices of ε and η, the fibrations

ψ
ε,η

are fiber isomorphic to each other and there are isomorphic to ψ
ε
.

This local fibration is also called the Milnor fibration of f at 0. The fibers
of this local fibration being diffeomorphic to each other, a fiber of a Milnor
fibration is called a Milnor fiber of f at 0.

1.3 The Local Monodromy

The fibrations ψ
ε

(resp. ψ
ε,η

) are given by a diffeomorphism h of a Milnor
fiber F, say F = ψ−1

ε
(1) (resp. F = ψ

−1

ε,η
(η)) onto itself called a geometric

monodromy of the fibration. Of course, this diffeomorphism is not unique,
but the isotopy class of this diffeomorphism is well-defined.
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The geometric monodromy defines an automorphism on the homology
(or on the cohomology) of the fiber called the monodromy of f at 0. In fact,
J. Milnor made the following observation: since f has an isolated singularity,
the homology groups of the fiber F vanish in dimensions 6= 0, n, namely we
have (see [12, Theorem 7.2]):

Theorem 1.4. Suppose that the germ f of complex analytic functions has an

isolated singularity at 0, a Milnor fiber of f at 0 has a trivial k-homology for

k 6= 0, n. When n 6= 0, the 0-th homology group is a cyclic free abelian group

and the n-th homology group is a free abelian group of rank µ, with

µ = dimC C{z0, . . . , zn
}/(∂f/∂z0, . . . , ∂f/∂zn

).

In the case n = 0, the reduced 0-th homology group is free abelian of rank

µ = m− 1, where m is the multiplicty of f at 0.

The number µ is called the Milnor number, or the Milnor multiplicity, of f
at 0.

1.4 Exotic Spheres

From the work of M. Kervaire and J. Milnor one can decide when a local
link S

ε
(0) ∩X ⊂ S

ε
(0) gives a manifold S

ε
(0) ∩X which is homeomophic to

a (2n− 1)-dimensional sphere, but not diffeomorphic to the standard sphere,
i.e. is an exotic sphere. Namely we have the following result (see [12, Theorem
8.5 and Remark 8.7]):

Theorem 1.5. If n 6= 2 the manifold S
ε
(0)∩X is homeomorphic to a sphere

S2n−1 if and only if the value at 1 of the characteristic polynomial of the

local monodromy of f at 0 is ±1. In which case the differentiable structure of

S
ε
(0) ∩X is given by the signature of the intersection pairing on the middle

homology of a Milnor fiber if n is even or by the Kervaire invariant if n is

odd.

Therefore, it appears that the computation of the monodromy and the inter-
section pairing on the middle homology of a Milnor fiber are important to
characterize the differentiable structure of the local link.

In the case of the quasi-homogeneous polynomials of the form
∑

n

i=0
z

ai

i
,

where the a
i
’s are integers ≥ 2, these computations were explicitly made by

F. Pham in [15]. Using Pham’s results E. Brieskorn (see [2]) could show, for
instance, that the local link at 0 of the singularity defined by

x
2 + y

2 + z
2 + t

3 + u
6k−1 = 0,

for k = 1, . . . , 28, gives the 28 topological spheres of dimension 7 which bound
a parallelizable manifold.
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Below, we shall explain an idea of F. Pham (see [16]) to compute the
intersection pairing on the middle homology of a Milnor fiber using the ge-
ometry of the versal deformation of the germ f .

2 An Example

Let us consider the simple case of the singularity defined by f = z
µ+1

0
+

∑

n

1
z

2

i
.

In this case µ = τ and we can choose F = z
µ+1

0
+

∑

n

1
z

2

i
+λ

µ−1z
µ−1

0
+. . .+λ1z0.

The critical locus C of the deformation Φ of f is defined by

∂F/∂z0 = . . . = ∂F/∂z
n

= 0.

Therefore, C is non-singular. The discriminant Dµ
of Φ is the image Φ(C) of

C by Φ and is defined by the discriminant polynomial ∆
µ

of the polynomial
in z0 given by zµ+1

0
+ λ

µ−1z
µ−1

0
+ . . .+ λ1z0 − λ0, where λ0 is the coordinate

of C× {0} in C× Cµ−1.
A representative of the germ Φ defines a complex analytic map from an

open neighbourhood U of 0 in Cn+1
×Cµ−1 onto an open neighbourhood V of

0 in C× Cµ−1 which has no critical points over the complement of D
µ

in V.
Since the fiber of Φ over 0 has an isolated singular point at 0, it is transverse
to small spheres S

ε
(0) (1� ε > 0) of Cn+1

× Cµ−1. For such a given ε, there
is η

ε
> 0, such that, for any η, η

ε
> η > 0, the fibers of Φ over points

m ∈ V, such that ‖0m‖, distance from 0 to m, is < η, are transverse to S
ε
(0).

Using Ehresmann Lemma, it is easy to show that Φ induces a locally trivial
fibration of B

ε
(0) ∩Φ−1(B

η
(0) \D

µ
) over B

η
(0) \D

µ
. Fibers of this fibration

are Milnor fibers of f at 0. In particular the n-th homology groups of these
fibers defined a local system over B

η
(0) \D

µ
. This local system corresponds

to a representation of the fundamental group π1(Bη
(0)\D

µ
, m0) of B

η
(0)\D

µ

at a point m0 ∈ Bη
(0) \D

µ
in the n-th homology group H

n
(φ−1(m0),Z):

ρ : π1(Bη
(0) \D

µ
, m0)→ Aut(H

n
(φ−1(m0),Z)).

For γ ∈ π1(Bη
(0) \D

µ
, m0) the automorphism ρ(γ) is called the monodromy

of H
n
(φ−1(m0),Z) along γ.

In [1], E. Artin showed that the fundamental group of the complement
of D

µ
in C × Cµ−1 is isomorphic to the group B

µ+1 of braids with µ + 1
strings. Since D

µ
is defined by a quasi-homogeneous equation ∆

µ
, the local

fundamental group of the complement of D
µ

in C×Cµ−1 at 0 is isomorphic to
the fundamental group of the complement of D

µ
in C× Cµ−1. Therefore, by

choosing adequately the open neighbourhood V in C×Cµ−1, the fundamental
group of the complement of D

µ
in V is isomorphic to the local fundamental

group at 0 of the complement of D
µ

in C× Cµ−1, so it is also isomorphic to
the group B

µ+1 of braids with µ+1 strings. In fact, using the conic structure
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theorem proved in [5] for non-isolated singularities, one can prove that open
balls centered at 0 with small radiuses are a system of good neighbourhoods
in the sense of Prill (see [17]), so for η small enough, an open ball B

η
(0) of

C × Cµ−1 centered at 0 with radius η is an adequate neighbourhood of 0 in
C×Cµ−1 in which the complement of D

µ
has a fundamental group isomorphic

to the braid group B
µ+1.

Let us choose a point m0 ∈ Bη
(0) \D

µ
. Let L be a complex line through

m0 which intersects D
µ

transversally in B
η
(0) at µ points. The fundamental

group π1(L\Dµ
, m0) of L\D

µ
at m0 is a free group generated by µ free gener-

ators. One can choose a distinguished basis e
i
, 1 ≤ i ≤ µ, of H

n
(φ−1(m0),Z)

associated to generators γ
i
, 1 ≤ i ≤ µ, of π1(Bη

(0) \D
µ
, m0) images of free

generators of the free group π1(L \ Dµ
, m0) such that, for 1 ≤ i < j ≤ µ,

γ
i
γ

j
= γ

j
γ

i
, if |i − j| > 1 and γ

i
γ

i+1γi
= γ

i+1γi
γ

i+1, such that for any
e ∈ H

n
(φ−1(m0),Z), we have

ρ(γ
i
)(e) = e+ (−1)

(n+1)(n+2)

2 (e, e
i
)e

i
,

where (. , .) is the intersection pairing on H
n
(φ−1(m0),Z).

The relations between the generators γ
i
, 1 ≤ i ≤ µ, of the fundamental

group gives relations between the monodromies ρ(γ
i
). We find, for |i− j| > 1,

(e
i
, e

j
) = 0

and, for 1 ≤ i ≤ µ− 1:
(e

i
, e

i+1) = ±1

and, in fact +1 for a good choice of the orientation of the vanishing cycles e
i
,

1 ≤ i ≤ µ.
In this example, an explicit presentation of the fundamental group of the

complement of the discriminant D
µ

has given a computation of the intersec-
tion form of the Milnor fiber.

Our aim is to have a similar result for the germ of a general holomorphic
function with an isolated singularity.

3 Geometry of a Versal Deformation

As above, we assume that f : (Cn+1
, 0) → (C, 0) is the germ of a complex

analytic function with an isolated critical point at 0. It is clear from the defi-
nition of the mini-versal deformation of (f−1(0), 0) that its isomorphism class
only depends on the local ring O

f
−1(0),0 of the hypersurface f−1 at the point 0.

In fact, two complex hypersurfaces isolated singularities are isomorphic if and
only if their mini-versal deformations are isomorphic. Therefore, we should
recover analytic invariants of the hypersurface singularity from its mini-versal
deformation. For instance:
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Lemma 3.1. The multiplicity of the discriminant of the versal deformation

of (f−1(0), 0) equals the Milnor multiplicity of f at 0.

Proof. Suppose that the multiplicity of f at 0 is ≥ 3. Let ε small enough, such
that f has no critical point in the punctured ball B

ε
(0) \ {0}. For a general

(a0, . . . , an
) ∈ Cn+1 small enough, J. Milnor observed that the function Fa :=

f +
∑

n

0
a

i
z

i
has only ordinary quadratic critical points in B

ε
(0) \ {0} with

distinct values by Fa. One may consider the function Fa as the restriction of
the mini-versal deformation of (f−1(0), 0) over a line λ−a0 = . . . = λ−a

n
= 0.

The critical points of Fa being ordinary quadratic with distinct values, it
means that this line is transverse to the discriminant D of Φ. The number of
intersection points is the multiplicity of D at 0 and J. Milnor indicated that
it is also the Milnor multiplicity of f at 0 (see [12], [11] or [14]).

When f has multiplicity 2, we can find local coordinates of Cn+1 such
that

f(z0, . . . , zn
) =

k−1
∑

0

z
2

i
+ g(z

k
, . . . , z

n
),

where g has multiplicity ≥ 3. In this case, we consider the function f+
∑

n

k
a

i
z

i
,

which has µ distinct ordinary critical point, whenever (a
k
, . . . , a

n
) is general

and small enough in Cn−k+1.
Since a versal deformation is obtained from a mini-versal deformation by

extending it by a trivial deformation the preceding result extends trivially to
versal deformations.

There is another way to find Milnor number. First, observe:

Lemma 3.2. Let Φ a versal deformation of f . The critical locus C(Φ) of Φ
is non-singular.

Proof. Let us assume that the multiplicity of f at 0 is ≥ 3, i.e. f ∈M
3, where

M is the maximal ideal of the local ring OCn+1
,0 of germs of holomorphic

functions of Cn+1 at the origin 0. In this case we can choose a base of

C{z0, . . . , zn
}/(f, ∂f/∂z0, . . . , ∂f/∂zn

)

such that the representatives of this base are 1, z0, . . . zn
, s

n+2, . . . , sτ
. There-

fore, the germ of map Φ0 : (Cn+1
, 0)× (Cτ−1

, 0)→ (C, 0)× (Cτ−1
, 0) defined

by

Φ0(z0, . . . , zn
, λ1, . . . , λτ−1) =

(

F (z0, . . . , zn
, λ1, . . . , λτ−1), λ1, . . . , λτ−1

)

,

with

F (z0, . . . , zn
, λ1, . . . , λτ−1) =

f(z0, . . . , zn
) + λ1x0 + . . . λ

n+1xn
+ λ

n+2sn+2 + . . .+ λ
τ−1sτ−1
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is a mini-versal deformation. It is enough to prove that the critical locus of Φ0

is non-singular to prove it for any mini-versal deformations of f , since that
any mini-versal deformation of f is isomorphic to one of them, say Φ0.

One can easily find that the critical locus C(Φ0) of Φ0 is given by

∂f/∂x0 + λ1 +

τ−1
∑

n+2

λ
i
∂s

i
/∂x0 = . . . = ∂f/∂x

n
+ λ

n+1 +

τ−1
∑

n+2

λ
i
∂s

i
/∂x

n
= 0.

Since these equations are obviously of multiplicity 1 with transverse initial
terms, the implicit function theorem immediately gives that C(Φ0) is non-
singular. Since any other mini-versal deformation Φ of f is isomorphic to Φ0,
the critical locus C(Φ) of Φ is also non-singular.

When f has multiplicity 2, as noticed above, we can find local coordinates
of Cn+1 such that

f(z0, . . . , zn
) =

k−1
∑

0

z
2

i
+ g(z

k
, . . . , z

n
),

where g has multiplicity ≥ 3. Now, we observe that a mini-versal deforma-
tion of f is obtained from a mini-versal deformation of g. Considering the
equations, it is easy to deduce the non-singularity of the critical space of a
mini-versal deformation of f from the fact that the critical space of a mini-
versal deformation of g, which has multiplicity ≥ 3, is non-singular according
to the preceding proof.

As for the preceding result, since a versal deformation is obtained from a
mini-versal deformation by extending it by a trivial deformation the regularity
of the critical locus extends trivially to versal deformations.

Now we have:

Proposition 3.3. The map ϕ from (C(Φ), 0) onto (Cτ−1
, 0) induced by the

composition of the mini-versal deformation Φ of f and the projection of

(C, 0)× (Cτ−1
, 0) onto (Cτ−1

, 0) is a ramified covering of degree µ, the Milnor

number of f at 0.

Proof. First, notice that ϕ is a finite morphism. By the geometric version of
Weierstrass preparation theorem (see [9]), it is enough to prove that ϕ is quasi-
finite, i.e. the point 0 is isolated in the fiber of ϕ over 0. This is an immediate
consequence of the fact that the origin 0 is an isolated critical point of f .
Since C(φ) is not singular, the morphism ϕ is also flat. Any holomorphic flat
finite morphism ψ : (X, 0) → (Y, 0) from a non-singular germ (X, 0) into a
non-singular germ (Y, 0) is a ramified covering of degree equal to the complex
dimension of the complex vector space O

X,0/ψ
∗
M

y,0, where ψ∗ : O
Y,0 → OX,0
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is the homomorphism induced by ψ and M
Y,0 is the maximal ideal of O

Y,0.
It remains to prove that the degree of the map ϕ is µ.

As noticed before the degree of ϕ equals dimCOC(Φ),0/ϕ
∗
MCτ−1

,0. One
can verify that the local ring O

C(Φ),0/ϕ
∗
MCτ−1

,0 is isomorphic to

OCn+1
,0/(∂f/∂x0, . . . , ∂f/∂xn

) ,

therefore the degree of ϕ is µ.

There are also other interesting features of the geometry of the versal defor-
mation. For instance, B. Teissier [18] proved that

Theorem 3.4. Let (∆(Φ), 0) be the discriminant of Φ, image by Φ of the

critical space (C(Φ), 0) of a versal deformation of f . The morphism Φ induces

a map n : (C(Φ), 0)→ (∆(Φ), 0) which is the normalization of (∆(Φ), 0) and

also its Nash modification.

In fact, one of the most interesting result that we shall need is the following:

Proposition 3.5. Let Φ be a versal deformation of f . There is a non-empty

Zariski open subset Ω1 of the Grassmannian manifold of complex planes

through 0 in Cτ such that, for any P ∈ Ω1, there is a representative ∆(Φ)
of the discriminant (∆(Φ), 0) closed in an open neighbourhood U of 0 in Cτ ,

and an open neighbourhood V of 0 in Cτ such for all v ∈ V except in a closed

analytic subset of V , the translate P + v = P
v

intersects ∆(Φ) into a curve

having only cusps and nodes as singularities.

A theorem from [8] gives a way to compute the local fundamental group
of the complement of an analytic germ of hypersurface (H, 0) in (CN

, 0) at
the point 0. First let H be a representative of the germ (H, 0) in an open
neighbourhood U of 0 in CN . Then, notice that, for ε > 0 small enough, the
fundamental group of the complement of H in B

ε
(0)◦, the open ball of CN

centered at 0 with radius ε, is isomorphic to the local fundamental group of
the complement of an analytic germ of hypersurface (H, 0) in (CN

, 0) at the
point 0.

In [8], we have the following result:

Theorem 3.6. Let H be a closed complex hypersurface in an open neighbour-

hood U of 0 ∈ H in CN . There is an open dense Zariski open set Ω2 in the

Grassmann space of 2-planes in CN , such that, for any P ∈ Ω2, there is an

open neighbourhood V of 0 in CN such for all v ∈ V except in a closed ana-

lytic subset of V , the translate P + v = P
v

intersects H in such a way that,

for any ε > 0 small enough, the fundamental group of B
ε
(0)◦ ∩ P

v
\H ∩ P

v

is isomorphic to the fundamental group of B
ε
(0)◦ \H. Moreover, the fun-

damental group of B
ε
(0)◦ ∩ P \H ∩ P surjects on the fundamental group of

B
ε
(0)◦ \H.
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For simplicity, we shall denote by P
v

= P + v a general plane of Cτ pass-
ing near 0, with P ∈ Ω1 ∩ Ω2, v ∈ V , and such that, for ε > 0 small enough,
the fundamental group of B

ε
(0)◦ ∩ P

v
\∆(Φ) ∩ P

v
is isomorphic to the local

fundamental group of the complement of (∆(Φ), 0) in (CN
, 0) and the inter-

section curve B
ε
(0)◦ ∩ P

v
∩∆(Φ) has only cusps and nodes as singularities.

And, we assume that the number of these cusps and nodes is the minimum
for P ∈ Ω1 ∩ Ω2. The plane P through 0 will also be denoted by P0. For a
general plane P

v
of Cτ passing near 0, the plane P is called a general plane

of Cτ .
Since the fundamental group of the local complement of a plane curve

in the plane at a cusp singularity is the group of braids with two strings,
and at a nodal point is an abelian group of two generators, the preceding
proposition and theorem shows that, conjugates of some generators of the
local fundamental group of the complement of (∆(Φ), 0) in Cτ at 0 either
commute or satisfy a 2-braid relation.

Unfortunately, this is not enough to obtain a workable presentation of
the local fundamental group of the complement of (∆(Φ), 0) in (Cτ

, 0), for
instance, in view of performing an calculation of the intersection matrix as in
the example presented above (from F. Pham).

Furthermore, we need also to know the number of cusps and nodes in a
general plane section of ∆(Φ) near 0.

4 Geometry of the Discriminant

In order to calculate the fundamental group of the local complement of
(∆(Φ), 0) in (Cτ

, 0), we saw that we need to understand the geometry of
a general plane section of ∆(Φ) and the geometry of a section of ∆(Φ) by a
general plane section passing near 0.

The first information on a general plane section passing near 0 is the
number of cusps and the number of nodes in the curve intersection.

In [10], we give a formula to get the number of cusps in that general
section:

Proposition 4.1. Let ∆(Φ) be a small representative of the discriminant

(∆(Φ), 0) of a versal deformation Φ : Cn+τ
→ Cτ of f . Let P

v
be a general

plane of Cτ passing near 0. The number of cusps of ∆(Φ)∩P
v
equals µ+µ1−1,

where µ is the Milnor number of f at 0 and µ1 is the Milnor number of the

complete intersection curve Φ−1(P0) ∩ C(Φ) at 0.

In the preceding proposition we have used the notion of Milnor number of
a complete intersection X with an isolated singularity at a point 0. Let us
define this notion.
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Let f1 = . . . = f
k

= 0 be equations of the complete intersection X in an
open neighbourhood U of 0 in Cn+k. So X is the fiber over 0 of ϕ : Cn+k

→ Ck,
where ϕ = (f1, . . . , fk

). Let B
ε
(0)◦ be an open ball centered with radius 1�

ε > 0, such that B
ε
(0)◦ ⊂ U and B

ε
(0)◦ ∩X \ {0} has no singular point.

Then, for (t1, . . . , tk) small enough and outside the discriminant of ϕ, the
space ϕ−1(t1, . . . , tk) = Ft is non-singular and has only homology in dimension
0 or n. The rank of the n-th reduced homology group of Ft is an integer called
the Milnor number of X at 0 (see [7]).

In the case (X, 0) is a curve, there is another interpretation of the Milnor
number due to R.O. Buchweitz and G.-M. Greuel (see [4]).

Let O
X,0 be the local ring of the curve (X, 0). Let O

X,0 be the integral
closure of O

X,0 in its total ring of fraction. The quotient O
X,0/OX,0 is a

complex vector space of finite complex dimension δ(X, 0). Let r(X, 0) be
the number of branches of (X, 0), i.e. the number of analytically irreducible
components of (X, 0). The Milnor number of X at 0 is

µ(X, 0) = 2δ(X, 0)− r(X, 0) + 1.

In [12], J. Milnor showed that this two definitions coincide when X is a plane
curve. Another result gives the number of nodes knowing the number of cusps:

Proposition 4.2. Let ∆(Φ) a small representative of the discriminant

(∆(Φ), 0) of a versal deformation Φ : Cn+τ
→ Cτ of f . Let P

v
be a general

plane of Cτ passing near 0. Let κ be the number of cusps of ∆(φ) ∩ P
v
. The

number of nodes of ∆(φ) ∩ P
v

equals

µ+ µ(∆(φ) ∩ Pv
, 0)− 1− 3κ

2

where µ is the Milnor number of f at 0 and µ(∆(φ) ∩ P
v
, 0) is the Milnor

number of (∆(φ) ∩ P
v
, 0).

Proof. It is enough to prove this proposition when Φ is a mini-versal deforma-
tion. Then, this result is consequence of the result of Teissier quoted above:
since the normalisation of ∆(Φ) coincides with the Nash modification, the
limits of tangent spaces of the discriminant ∆(Φ) at 0 is reduced to the hy-
perplane {0} × Cτ−1. Therefore, the tangent cone of the curve (∆(φ) ∩ P, 0)
is L = P ∩ {0} × Cτ−1. The projection p of Cτ onto {0} × Cτ−1 induces a
map p

L
of (∆(φ) ∩ P, 0) onto (L, 0) which is transverse.

The discriminant of p consists only of the point 0, with multiplicity
µ+ µ(∆(φ) ∩ P

v
, 0)− 1.

The sum of the discriminant numbers of the projection p
v

induced by p
of ∆(φ)∩P

v
onto the line L

v
= P

v
∩{0}×Cτ−1 is also equal to µ+µ(∆(φ)∩

P
v
, 0)−1, since discriminants are invariant by base change. The projection p

v
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being transverse at any point of ∆(φ)∩ P
v
, only singular points of ∆(φ)∩P

v

contribute to the discriminant of p
v
. Since we have ν nodes et κ cusps, the

discriminant of p
v

is 3κ + 2ν, because the discriminant of nodes is 2 and
the discriminant of cusps is 3, so µ+ µ(∆(φ) ∩ P

v
, 0)− 1 = 3κ+ 2ν, which

proves our proposition.

Unfortunately, so far, these are the only features on the geometry of general
plane sections of the discriminant which are known.

In the case of section by 3-linear spaces near 0, in [13], some similar
formulae have been obtained on the number of “deeper” singularities.

5 Open Problems

5.1 Fundamental Groups

The first unsolved problem is the computation of the fundamental group of
the complement of the discriminant of a versal deformation.

At least do this computation for versal deformations of a particular class
of holomorphic functions with isolated singularity. In [3], Brieskorn solved
the case of simple singularities. One may consider the class of non-degenerate
hypersurfaces.

One can consider the local fundamental group of the complement of the
discriminant in a general plane section. This might be easier than the pre-
ceding problem, but as we saw above, the local fundamental group of the
complement of the discriminant is a quotient of this latter one.

In the case of the function zµ+1

0
+ . . .+

∑

n

1
z

2

i
the general plane section of

the discriminant of a versal deformation is a curve whose equisingularity type
is the one of ξµ + η

µ+1. Since the fundamental group of the local complement
of this curve is generated by two generators, we obtain that the braid group
B

µ
is generated by two generators.

We are lead to the following problem: determine the equisingularity class
of a general plane section of the discriminant of a versal deformation.

5.2 Monodromy

The preceding problem about the fundamental group is aimed to compute the
representation of this fundamental group in the n-th homology of a general
fiber of a versal deformation of f . It remains to calculate this representation.

Is it possible to get the monodromy of the Milnor fibration of f from this
representation?
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5.3 Intersection Form

In the above example from F. Pham, the initial idea was to have an explicit
way to have the intersection form on the Milnor fiber of f at 0. Is there a
way to obtain the intersection form of the Milnor fiber from a presentation
of the fundamental group of the complement of the discriminant of a versal
deformation?

5.4 Topology of the Discriminant

A general problem is to understand the topology of the discriminant of a versal
deformation. By Milnor theory, the topology of a hypersurface is essentially
given by its Milnor fibration. Another natural problem is to determine the
Milnor fiber of the discriminant. The geometrical monodromy of this Milnor
fiber is related to the computation of the local fundamental group of the
complement of the discriminant.

5.5 Complete Intersections

In the case of complete intersections. There is also a versal deformation for
complete intersection with isolated singularity as it was shown by G. Tjurina
([19]).

The preceding observations can be repeated for the case of the discrimi-
nant of versal deformation of a complete intersection with isolated singularity.
The main difference is that in this case the limit of tangent spaces at 0 of the
discriminant is not unique. In [6], G.-M. Greuel and the author proposed a
study of the number of cusps and nodes of a general plane section near 0 of
the discriminant. No other studies have been made in this case of complete
intersections.
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[11] Lê Dũng Tráng: Singularités des hypersurfaces complexes. Acta Scient.

Vietn. 7, 24–33 (1971).

[12] Milnor, J.: Singular points of complex hypersurfaces. Ann. Math. Stud.

61, Princeton, N.J., 1968.

[13] Noui-Mehidi, S.: Queues d’arondes d’une déformation semi-universelle.
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21 Years of SINGULAR Experiments
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Dedicated to Gert-Martin Greuel on the occasion of his 60th birthday

Abstract

This article gives some overview on Singular, a computer algebra sys-
tem for polynomial computations with special emphasis on the needs of
commutative algebra, algebraic geometry and singularity theory, which
has been developed under the guidance of G.-M. Greuel, G. Pfister and
the second author [31]. We draw the bow from Singular’s early years
to its latest features. Moreover, we present some explicit calculations,
focusing on applications in singularity theory.

Introduction

By the development of effective computer algebra algorithms and of powerful
computers, algebraic geometry and singularity theory (like many other dis-
ciplines of pure mathematics) have become accessible to experiments. Com-
puter algebra may help

• to discover unexpected mathematical evidence, leading to new conjec-
tures or theorems, later proven by traditional means,

• to construct interesting objects and determine their structure (in par-
ticular, to find counter-examples to conjectures),

• to verify negative results such as the non-existence of certain objects
with prescribed invariants,

• to verify theorems whose proof is reduced to straightforward but tedious
calculations,

1991 Mathematics Subject Classification. 13Pxx, 14Qxx, 14B05, 32S10, 14E15
Key words. Computational algebraic geometry, singularity theory, computer algebra sys-

tem, mathematical experiments
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• to solve enumerative problems, and

• to create data bases.

In fact, in the last decades, there is a growing number of research articles in
algebraic geometry and singularity theory originating from explicit computa-
tions (such as [1] and [46] in this volume).

What abilities of a computer algebra system are needed to become a
valuable tool for algebraic geometry and, in particular, for singularity the-
ory ? First of all, the system needs an efficient representation of polynomi-
als with exact coefficients. Then, it should provide a fast implementation
of Buchberger’s Gröbner basis algorithm and its variants for standard basis
computations in local rings (Mora’s tangent cone algorithm, etc.). This makes
available the basic ideal operations such as computing intersections and quo-
tients of ideals and elimination ideals. Combining Gröbner (standard) bases
with combinatoric evaluation leads to tools for computing (local) dimensions
and multiplicities of ideals (in particular, Milnor and Tjurina numbers and
intersection multiplicities), and for Hilbert functions of graded ideals.

This functionality should be extended to (graded) submodules of free
modules; the system should provide commands for computing syzygies and
(graded) free resolutions, and for computing cokernels of module homomor-
phisms (the basic constructions of homological algebra).

Based on multivariate factorization, the system should provide us with
tools for computing the radical and the primary decomposition of an ideal.
There should be some tools for visualization (or at least for communicating
with visualization programs).

Moreover, for particular applications such as computing sheaf cohomol-
ogy and direct image sheaves, or computing with D-modules, the system
should be able to treat some important non-commutative structures, too.

It would be desirable to have user-written extensions (libraries) for spe-
cialized computational tasks and for automating repeated experiments.

All this is provided by the computer algebra system Singular, which
has been developed over the past two decades under the guidance of G.-M.
Greuel, G. Pfister and the second author.

In this article, we review some history of Singular, starting with the
original motivation for setting up such a system, and drawing the bow to Sin-

gular’s latest version 3.0 (with its new features, including absolute primary
decomposition, newly implemented algorithms for Gröbner basis computa-
tions, and, in particular, the ability to compute in non-commutative GR-
algebras).

We explain some mathematical background for computing in local rings,
focusing on the relation between computations with power series and with
rational functions. By presenting explicit computations, we introduce some
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of the most important Singular commands and libraries for applications in
singularity theory. These examples include the computation of basic invariants
such as the Milnor and Tjurina number or the spectrum of a hypersurface
singularity as well as studying families of singularities, and the resolution of
singularities.

1 The Early Years

In this section, we give some historical overview on Singular’s development.

1.1 First Steps

The birth of Singular can be dated back to about 1982, when G.-M. Greuel
and G. Pfister tried to generalize K. Saito’s theorem saying that, for a germ

(X, 0) of an isolated complex hypersurface singularity, the following are equiv-

alent:

(a) (X, 0) is quasi-homogeneous (that is, has a good C∗-action).

(b) µ(X, 0) = τ(X, 0).

(c) The Poincaré complex of (X, 0) is exact.

Trying to extend this theorem to complete intersection curve singularities,
they only succeeded in proving the equivalence of (a) and (b). They expected
that (b) and (c) are, indeed, not equivalent for general complete intersec-
tion curve singularities. As the exactness of the Poincaré complex could be
expressed as an equality of dimensions of O

X,0-modules (see Example 2.4),
there was hope that a counter-example could be found by experimenting with
a computer (some trials showed that the needed computations were too hard
for doing them manually). In those days, however, there was no computer alge-
bra system available which could compute Milnor numbers, Tjurina numbers
of O

X,0-ideals and the dimensions of O
X,0-modules (for non-trivial examples).

Indeed, such a system requires the implementation of Mora’s tangent cone
algorithm for computing standard bases.

The first version of a standard basis algorithm (called BuchMora) was
implemented in BASIC on a ZX-Spectrum by K.P. Neuendorf (born Schemmel)
and G. Pfister in 1983. This implementation allowed them to compute first
examples and to get some idea about the mathematics behind the examples.
But, it was not yet sufficient for finding a counter-example.

The real development started in 1984 with an implementation of Mora’s
tangent cone algorithm in Modula-2 on an Atari computer at the Humboldt-
University in (East-)Berlin (by G. Pfister and a group of students including
the second author). After a while, a list of counter-examples was produced
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(see [43]). At that time, the system could only compute with coefficients in
a small prime field F

p
. However, the experiments showed which examples

are candidates for being a counter-example and how the computations in
characteristic 0 should look like. The proof was then given manually.

1.2 Learning to Speak: Language and Scripts

In the early 1990s the system’s ”home-town” moved to Kaiserslautern and
the system was baptised Singular. A general standard basis algorithm was
implemented in C, and Singular was ported to Unix, MS-DOS, and MacOS. A
programming language and an interpreter were added, and the possibility to
write scripts (later libraries) to obtain additional functionality by combining
the building blocks provided by the system. The first draft of the language
and the corresponding grammar were produced by W. Neumann, who helped
converting the existing sources to C/C++, too. Today, you may still find some
remainings of the eighties in the sources. The first publication on Singular

[24] carries the names of Singular’s development team in this period.

The driving force behind the development of Singular at that time was
the hope to disprove Zariski’s multiplicity conjecture: In his retiring address
to the AMS [50], Zariski asked whether two complex hypersurface singulari-
ties {f = 0} and {g = 0} with the same embedded topological type have the
same multiplicity. The statement has been known to hold for curves and for
semi-quasihomogeneous singularities. Potential counter-examples have Milnor
number > 1000. To make such examples accessible to practical computations,
much more sophisticated strategies in the implementation of Buchberger’s
(resp. Mora’s) algorithm than the ones used that far were needed.

After trying many examples without finding a counter-example, enough
experience was gained to prove a partial positive result (see [25, Chapter 5]).

1.3 Kindergarten and Elementary School

Continuous extensions (such as univariate and multivariate polynomial factor-
ization1, gcd computations1, links) and refinements led in 1997 to the release
of Singular version 1.0 and in 1998 to the release of version 1.2 (with much
faster implementations of standard and Gröbner bases algorithms, including
a Hilbert driven version; libraries for primary decomposition, integral closure
of rings, etc.).

1Provided by the Singular-Factory library, which was programmed by R. Stobbe,
J. Schmidt and M. Messollen, and which is also used by Macaulay2.
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1.4 The Teenage Years

O. Bachmann contributed with a lot of computer science know-how to the
project — he programmed a customized memory manager, better data rep-
resentations for monomials and a lot of optimizations (minor changes with
large effects). Jointly with the second author, major parts of the Singular ker-
nel were rewritten. As a result, for most computations, Version 2.0 (released
in 2001) was much faster than the previous versions of Singular. This was
also caused by new and better implemented algorithms (e.g., for computing
resolutions and determinants, see [5, 6]). We also learned many tricks from
others: geobuckets [49] were originally designed to speed up Macaulay, bit
vector support for monomials (for speeding up divisibility tests [9]) appeared
first in a paper of the CoCoA group.

Besides these internal changes, Singular 2.0 offered many new features
and functionalities (which were partly already incorporated in the 1.3 series).
For instance, a native Windows distribution with the usual Windows installer,
an Emacs user interface, a new help system (based mainly on HTML), etc. Many
new people started using Singular with version 2.0. Besides applications in
algebraic geometry and singularity theory, there were also surprising applica-
tions: see [7] for an application in group theory. Other applications came from
microelectronics and from economics. For these tasks a symbolic-numerical
solver was programmed into Singular.

At the ISSAC 2004 conference in Santander, Singular was awarded the
Jenks Prize for Excellence in Software Engineering.

Version 3.0 was developed in parallel to the continuated work on the 2.0.x
series. Some of its new features appeared in (inofficial) versions 2.1.x. The
official release of Singular 3.0 was at the MEGA conference in May 2005.

1.5 Friends

Some of the building blocks of Singular have been borrowed from elsewhere:

• the Gnu Multiple Precision Library (GMP, http://www.swox.com/gmp/)
provides a fast arithmetic for long integers and long floating point num-
bers.

• the NTL library of Victor Shoup (http://shoup.net/ntl/) is often used
for operations on univariate polynomials, such as factorization and gcd
computation.

• surf (see http://surf.sourceforge.net/) is used for visualizing real
algebraic varieties (curves in R2, surfaces in R3 and hyperplane sections
on such surfaces). It provides the drawing abilities for Singular.

• some others are used by libraries (for example, resgraph.lib uses tools
from the graphiz packages, see http://www.graphviz.org/)
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2 Applications in Singularity Theory

Usually, singularity theory deals with (germs of) complex spaces rather than
with (germs of) algebraic varieties. That is, we have to compute with (formal
or convergent) power series rather than with polynomials or rational func-
tions. And, we have to compute with complex coefficients rather than with
coefficients in some computational field.

In a computer algebra system like Singular, however, we can basically
compute only in polynomial rings K[x] = K[x1, . . . , xn

] or in specific2 local-
izations thereof, where K is some computational field (such as Q and F

p
or a

finite or transcendental extension thereof). Nevertheless, for many questions,
computations in such rings are sufficient for deducing properties of complex
space germs. Some theoretical background is given in Section 2.1. In Section
2.2, we list the most important Singular libraries for applications in singu-
larity theory. Some of these are used in Section 2.3 where we turn to explicit
examples.

2.1 Computing in Local Rings

The implementation of localizations of polynomial rings is based on fixing
specific orderings on the monomials in K[x].

We call any semigroup ordering on the set of monomials xα = x
α1

1
· · ·x

αn
n

,
α ∈ Nn, a monomial ordering . It is called a global ordering if 1 < x

i
for each

i, and a local ordering if 1 > x
i

for each i. Otherwise, it is called a mixed

ordering. Given a monomial order > on K[x], the set S
>

of all polynomials
u ∈ K[x] whose largest (or leading) term L

>
(u) is a non-zero constant is

multiplicatively closed. We define K[x]
>

to be the localization of K[x] at S
>
.

If I ⊂ K[x]
>

is an ideal, a finite subset G = {f1, . . . , fr
} ⊂ I is called a

standard basis iff the leading terms L
>
(f

i
), i = 1, . . . , r, generate the leading

ideal L
>
(I) := 〈L

>
(f) | f ∈ I \ {0}〉 ⊂ K[x]. Then G is also a generating set

for I as an ideal of K[x]
>
. It can be computed by a variant of Buchberger’s

algorithm which is due to Mora (for local orderings) respectively Greuel and
Pfister, and independently Gräbe (for arbitrary orderings), see [30, Section
1.7]. The corresponding Singular command is std.

From a standard basis, we may read all information encoded in the lead-
ing ideal L

>
(I). For instance, we may read the dimension (resp. vector space

dimension) of the quotient K[x]
>
/I, since

dim K[x]
>
/I = dim K[x]/L

>
(I) ,

(

dim
K

K[x]
>
/I = dim

K
K[x]/L

>
(I)

)

.

The concept of standard bases extends to submodules M of free K[x]
>
-

modules, providing us with an algorithm for computing syzygies (kernels of

2See [30, Example 1.5.3] for examples.
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module homomorphisms). The corresponding Singular command is syz.
Successively computing syzygies of syzygies (and minimizing the result by
Gaussian elimination), we can compute a (minimal) free resolution of M

(mres). Alternatively, make use of Schreyer’s algorithm (sres), see [30, Sec-
tion 2.5].

If K ⊂ L is a field extension, and if I is an ideal of L[x]
>

generated
by polynomials f1, . . . , fr

with coefficients in K, then the standard basis al-
gorithm applied to f1, . . . , fr

yields standard basis elements for I which are
also defined over K. In particular, this allows us to derive information on the
(local) dimension and multiplicity of complex varieties by computations over
Q (respectively over some number field K). Similarly for information on free
resolutions of finitely generated K[x]

>
-modules such as the Betti numbers.

Note, however, that a prime ideal of K[x]> need not generate a prime
ideal of L[x]

>
. From a computational point of view, this is reflected by the

fact that for computing a primary decomposition, algorithms for polynomial
factorization are needed in addition to standard basis techniques. In contrast
to Buchberger’s algorithm, the algorithms for polynomial factorization and
their results are highly sensitive to the coefficient field (see Section 3.3).

In Singular, it is possible to compute with ideals of K[x]
>

and with finitely
generated K[x]

>
-modules (given either by a presentation matrix or as a sub-

module of a free K[x]
>
-module with a fixed basis). In fact, computations

over K[x]
>

are mimicked by considering the elements of S
>

as units in stan-
dard basis computations which entirely take place in K[x]. To emphasize this
point, we say that K[x]

>
is the ring implemented by the monomial ordering

>. We illustrate the behavior of standard basis computations by a simple
example:

Example 2.1. We consider the ideal generated by x2+ x = x(x+1) in two
different rings. The ring R implements Q[x], while S implements Q[x]〈x〉:

> ring R = 0, x, dp; // global ordering: x>1

> ideal I = x2+x;

> std(I);

_[1]=x2+x

> ring S = 0, x, ds; // local ordering: 1>x

> ideal I = x2+x;

> std(I);

_[1]=x

The first entry 0 in the defining list for the rings refers to the characteristic
of the coefficient field, the second entry to the variables, and the third entry
to the chosen monomial ordering. For R, we have chosen the degree reverse
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lexicographic ordering >dp, which is a global monomial ordering, defined by

xα
>dp xβ :⇐⇒ deg xα

> deg xβ or (deg xα = deg xβ and the last non-
zero entry of α− β is negative) .

For S, we have chosen the negative degree reverse lexicographic order >ds,
which is a local monomial ordering, defined by

xα
>ds xβ :⇐⇒ deg xα

< deg xβ or (deg xα = deg xβ and the last non-
zero entry of α− β is negative) .

Together with the above observation on the role of the coefficient field, the
following proposition allows us to deduce (numerical) information on complex
space germs from computations over Q[x]〈x〉. For a proof, see [30, Cor. 7.4.6].

Proposition 2.2. Let I ⊂ K[x]〈x〉 be an ideal.

(1) The map K[x]〈x〉/I →K[[x]]/IK[[x]] induced by the natural inclusion

K[x]〈x〉⊂ K[[x]] is a faithfully flat injection. In particular, a sequence

0→M ′
→M →M

′′
→ 0 of K[x]〈x〉/I-modules is exact iff the induced

sequence of K[[x]]/IK[[x]]-modules is exact.

(2) If K[x]〈x〉/I is a finite dimensional K-vector space, then the inclusion

K[x]〈x〉/I ⊂K[[x]]/IK[[x]] is an isomorphism of local K-algebras. In

particular, both vector spaces have the same dimension and a common

basis represented by monomials.

If K = R or C, the analogous statements hold for K{x} in place of K[[x]].

Remark 2.3. Of course, for some questions we cannot get around com-
puting with power series. A typical example is the factorization problem in
K[[x1, . . . , xn

]]. We do not know any system which could effectively solve this
problem for n ≥ 3 variables. 3

For more details and for a careful introduction into Singular and its pro-
gramming language, we refer to [30, 12].

2.2 Libraries for Singularity Theory

The Singular package comes with many user-written libraries which are
valuable for applications in singularity theory. When turning to explicit com-
putations in the next section, we will apply several commands which are
provided by such libraries. Here, we just give an overview on the functional-
ity:

3For n = 2, the hnexpansion command from hnoether.lib computes (implicitly) an
irreducible factorization in Q[[x]], Q the algebraic closure of Q.
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Library Purpose

sing.lib Computing invariants of singularities
classify.lib Arnold’s classification of singularities
mondromy.lib Compute the monodromy of an isolated hypersurface singu-

larity
gmssing.lib Invariants related to the Gauß-Manin system of an isolated

hypersurface singularity
gmspoly.lib Invariants related to the Gauß-Manin system of a cohomo-

logically tame polynomial
primdec.lib Algorithms for computing (absolute) primary decomposition

and radical of ideals
mprimdec.lib Primary decomposition of modules
normal.lib Normalization of affine rings, geometric genus of projective

curves
resolve.lib Resolution of singularities
reszeta.lib Applications of resolution of singularities (intersection form,

Denef-Loeser zeta function)
resgraph.lib Display tree of charts of the resolution
deform.lib Computing miniversal deformations
hnoether.lib Hamburger-Noether (Puiseux4) expansion of reduced plane

curve singularities
equising.lib Equisingularity ideal and equisingular strata of (families of)

plane curve singularities
spcurve.lib Deformations and invariants of Cohen-Macaulay codimen-

sion 2 singularities
qhmoduli.lib Moduli spaces of semi-quasihomogeneous isolated hypersur-

face singularities
finvar.lib Compute invariant rings of finite groups
brnoeth.lib Brill-Noether algorithm for solving the Riemann-Roch prob-

lem (for plane curves), Weierstraß semigroup, and applica-
tions to AG-codes

2.3 Examples

The first example makes us return to Singular’s origin. It is one example
showing that the exactness of the Poincaré complex

0 −→ C −→ O
C,0

d

−→ Ω1

C,0

d

−→ Ω2

C,0

d

−→ Ω3

C,0
−→ 0

of a complete intersection curve singularity (C, 0) does not imply that the
curve singularity is quasihomogeneous.

4The concept of Hamburger-Noether expansions replaces the concept of Puiseux expan-
sions for coefficient �elds of positive characteristic. In characteristic 0, a Puiseux expansion
can be deduced from a Hamburger-Noether expansion by a coordinate change of type
t 7→ tu1/m, u ∈ K[[t]] a unit.
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Example 2.4. Let f = xy+z
4 and g = xz+y

5+yz
2, and let (C, 0) ⊂ (C3

, 0)
be defined by f = g = 0. We use Singular to compute the Tjurina number

τ(C, 0) = dimC T
1

(C,0)
= dimC C{x, y, z}/〈f, g, M1, M2, M3〉 ,

where M1, M2, M3 are the 2–minors of the Jacobian matrix of f and g:

> ring R = 0, (x,y,z), ds; // compute in Q[x,y,z]_<x,y,z>

> poly f, g = xy+z4, xz+y5+yz2;

> ideal I = f, g;

> matrix J = jacob(I); // Jacobian matrix

> ideal Tjur = I, minor(J,2);

> vdim(std(Tjur)); // compute K-dimension of R/Tjur

12

Alternatively, use the built-in command tjurina from sing.lib.

> LIB "sing.lib";

> tjurina(I);

12

Comparing it with the Milnor number ([26, Korollar 5.5], see also [41])

µ(C, 0) = dimC Ω1

C,0
/dO

C,0

= dimC C{x, y, z}/〈f, M1, M2, M3〉 − dimC C{x, y, z}
/〈

∂f

∂x
,

∂f

∂y
,

∂f

∂z

〉

,

we see that (C, 0) is not quasihomogeneous5:

> milnor(I); // from sing.lib

13

However, the Poincaré complex is exact. Indeed, as shown in [29], it is suffi-
cient to check that µ(C, 0) = dimC Ω2

C,0
− dimC Ω3

C,0
. Note that dimC Ω3

C,0
= 1.

Moreover, Ω2

C,0
= Ω2

C3
,0

/(

〈f, g〉Ω2

C3
,0

+ df ∧ Ω1

C3
,0

+ dg ∧ Ω1

C3
,0

)

is isomorphic

to O3

C,0
/M , where M ⊂ O

3

C,0
is generated by the six vectors

(

∂f

∂y
,

∂f

∂z
, 0

)

,
(

∂f

∂x
, 0,−∂f

∂z

)

,
(

0, ∂f

∂x
,

∂f

∂y

)

,
(

∂g

∂y
,

∂g

∂z
, 0

)

,
(

∂g

∂x
, 0,−∂g

∂z

)

,
(

0, ∂g

∂x
,

∂g

∂y

)

:

> qring Q = std(I); // quotient ring Q=R/I

> poly f = imap(R,f); // map f from R to Q

> poly g = imap(R,g);

> module M = [diff(f,y),diff(f,z),0], [diff(f,x),0,-diff(f,z)],

. [0,diff(f,x),diff(f,y)], [diff(g,y),diff(g,z),0],

. [diff(g,x),0,-diff(g,z)],[0,diff(g,x),diff(g,y)];

> vdim(std(M));

14

5Generalizing Saito’s result for isolated hypersurface singularities, it is shown in [29]
that (C, 0) is quasihomogeneous i� µ(C, 0) = τ(C, 0).
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From the output, we read that dimC Ω2

C,0
= 14 = µ(C, 0) + dimC Ω3

C,0
.

The next example deals with determining the number of singularities of a
given projective hypersurface:

Example 2.5. We use Singular to check that the septic surface constructed
by O. Labs and D. van Straten in [37] (see also the preamble of this proceed-
ings volume) has, indeed, 99 nodes:

> ring R = (0,a), (x,y,w,z), dp; //the surface is defined over a

> minpoly = 7*a^3+7*a+1; //primitive field extension of Q

> number a(1) = -12/7*a^2 - 384/49*a - 8/7;

> number a(2) = -32/7*a^2 + 24/49*a - 4;

> number a(3) = -4*a^2 + 24/49*a - 4;

> number a(4) = -8/7*a^2 + 8/49*a - 8/7;

> number a(5) = 49*a^2 - 7*a + 50;

> poly f = ((z+w)*(x2+y2)+a(1)*z3+a(2)*z2w+a(3)*zw2+a(4)*w3)^2*

. (z+a(5)*w) - (x7-21x5y2+35x3y4-7xy6+7z*(x2+y2)^3

. -56z3*(x2+y2)^2+112z5*(x2+y2)-64z7);

> ideal I = jacob(f); //f homogeneous => f in jacob(f)

> option(redSB);

> ideal J=std(I);

> degree(J);

// dimension (proj.) = 0

// degree (proj.) = 99

From the output, we read that, counted with multiplicity, the surface has 99
singularities. To get some feeling for the size of J, we make Singular print
the number of generators and the number of digits and letters used when
displaying J:

> size(J);

73

> size(string(J));

208101

To convince ourselves that all singularities are simple nodes, we compute the
non-nodal locus of the septic in P3(C):

> matrix Hessian = jacob(jacob(f)); //Hessian matrix

> ideal NonNodal = minor(Hessian,2), J;

> NonNodal = std(NonNodal);

> degree(NonNodal);

// dimension (affine) = 0

// degree (affine) = 810
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From the output, we read that the non-nodal locus of the affice cone over C

consists only of the origin. Thus, the non-nodal locus in P3 is empty. Note
that these computations take only a few seconds. On the other hand, trying
to compute the singular locus in the affine charts takes much longer (see [37]
for such computations6).

Our third example deals with families of singularities. We use Singular to
stratify the base space of the miniversal deformation of a simple hypersurface
singularity with respect to the Tjurina number. Such a stratification may be
used, for instance, for explicitly determining the adjacencies (possible defor-
mations) of the given singularity.

The stratification problem can also be treated for Cohen-Macaulay codi-
mension 2 singularities using Singular. In this case, however, a modification
of the standard basis algorithm is required. See [18] for details and, in par-
ticular, for the obtained adjacency diagram of simple isolated complete inter-
section space curve singularities (Singular experiments helped to complete
the previously known results by Giusti and Goryunov).

Example 2.6. For simplicity reasons, we consider the case of an A
k
-singu-

larity (we choose k = 3). To compute the miniversal deformation, we could
use versal from deform.lib. However, since we know the result, we prefer
to proceed as follows:

> ring R = 0, (x,y), ds;

> int k = 3;

> poly f = x^(k+1)+y^2;

> ideal Tjur = f, jacob(f); //Tjurina ideal

> def kb = kbase(std(Tjur)); //vector space basis of R/Tjur

> ring Ra = 0, (x,y,a(1..k)), (ds(2),dp);

> def kb = imap(R,kb);

> poly F = imap(R,f);

> for (int i=1; i<=k; i++) { F = F+a(i)*kb[i]; }

> F; //the miniversal family

a(3)+x*a(2)+x^2*a(1)+y^2+x^4

Next, we compute a presentation matrix for the relative T
1 of the miniversal

family as Q[a1, . . . , ak
]-module (making use of [38, Proposition 4.5]):

> ring R1 = 0, (x,y,a(1..k)), (dp(2),dp); //need special ordering

> poly F = imap(Ra,F);

6If we just want to check whether the result is plausible, we could compute over a
(sufficiently large) �nite �eld, say K = F34511, where the polynomial 7a3 + 7a + 1 has a
root (here, 17). Usually, the result obtained over such a �eld coincides with the result
obtained in characteristic 0, and the computations are much faster.
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> ideal jF = diff(F,x), diff(F,y);

> option(redSB); //compute reduced Groebner bases

> jF = std(jF);

> matrix PresT1[k][k];

> for (i=1; i<=k; i++) {

. PresT1[i,1..k] = transpose(coef(reduce(x^(i-1)*F,jF),xy))[2];

. }

Finally, we use the procedure flatteningStrat from homolog.lib to com-
pute the strata of constant Tjurina number:

> LIB "homolog.lib";

> flatteningStrat(PresT1);

[1]:

_[1]=4*a(1)^3*a(2)^2-16*a(1)^4*a(3)+27*a(2)^4

-144*a(1)*a(2)^2*a(3)+128*a(1)^2*a(3)^2-256*a(3)^3

[2]:

_[1]=9*a(2)^3-32*a(1)*a(2)*a(3)

_[2]=3*a(1)*a(2)^2-8*a(1)^2*a(3)+32*a(3)^2

_[3]=a(1)^2*a(2)+12*a(2)*a(3)

_[4]=2*a(1)^3+9*a(2)^2-8*a(1)*a(3)

[3]:

_[1]=a(3)

_[2]=a(2)

_[3]=a(1)

As we might have expected, we get that the Tjurina number is 1 along a
hypersurface (having a swallowtail singularity), there is a 1-dimensional stra-
tum in the base of the miniversal family over which each fibre has Tjurina
number 2 (the singular locus of the swallowtail) and Tjurina number 3 holds
precisely over the origin. If we consider the fibre over the point (1, 0, 1

4
), resp.

over (−3

2
, 1,− 3

16
), which both belong to the 1-dimensional stratum with Tju-

rina number 2, we see that the A3-singularity is splitted up into two nodes,
resp. deformed to an A2-singularity.

> map phi = R1,x,y,1,0,1/4;

> primdecGTZ(slocus(phi(F))); //primary decomp. of singular locus

[1]:

[1]:

_[1]=2*x^2+1

_[2]=y

[2]:

_[1]=2*x^2+1

_[2]=y

> map psi = R1,x,y,-3/2,1,-3/16;
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> primdecGTZ(slocus(psi(F)));

[1]:

[1]:

_[1]=4*x^2-4*x+1

_[2]=y

[2]:

_[1]=2*x-1

_[2]=y

The final example deals with resolution of singularities and the computa-
tion of spectral numbers. Here, we make use of the libraries resolve.lib,
reszeta.lib and gmssing.lib which belong to the new features of Singu-

lar 3.0 (see [20], [21], respectively [44], [45], for more on the algorithms
implemented in these libraries):

Example 2.7. We compute the resolution of an isolated surface singularity
(one of the examples in [20]):

> LIB "resolve.lib";

> LIB "reszeta.lib";

> LIB "resgraph.lib";

> ring R = 0, (x,y,z), dp;

> poly f = x2y2z2+x7+y8+z8;

> list L = resolve(f); //compute resolution of singularity

> size(L[1]); size(L[2]);

44

90

The list L consists of two list of rings. The first list of rings collects all in-
formation on the resolution in the 44 final charts (where the singularity is
resolved). The second list collects all information on intermediate results of
the resolution process. To get an overview on the resolution process, we use
the Restree command (from resgraph.lib). At this writing, this command
calls the external programs dot and xv (not included in the Singular pack-
age) to produce a picture visualizing the tree of all the 90 charts considered in
the resolution process. Before applying Restree, we have to use collectDiv

(from reszeta.lib) to identify the exceptional divisors in different charts:

> list identED = collectDiv(L);

> ResTree(L,identED[1]);

We do not print the returned tree of charts here as it would be unreadable
due to the limited amount of space available. Instead, we compute the inter-
section form and the genera of the exceptional divisors. Instead of printing
the intersection matrix, we use InterDiv from resgraph.lib (which calls
dot and xv) to get a graphic visualization:
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> list iD = intersectionDiv(L);

> iD[2]; // genera of exceptional divisors

0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

> InterDiv(iD[1]);

In the diagram, each filled circle corresponds to an exceptional divisor with
self intersection −2. Otherwise, the self intersection is displayed. The circles
are joined by a line iff the corresponding exceptional divisors meet.

Next, we compute the Denef-Loeser zeta function:

> zetaDL(L,1);

[1]:

(1120s3+1413s2+618s+98)/(784s4+1960s3+1764s2+686s+98)

To compute the spectral numbers (and their multiplicities) of the isolated
surface singularity defined by f , we use spectrum from gmssing.lib:

> LIB "gmssing.lib";

> ring Rloc = 0, (x,y,z), ds;

> poly f = imap(R,f);

> list Sp = spectrum(f);

> size(Sp[1]); //number of pairwise different spectral numbers

70

> def SN = Sp[1]; SN[1..11]; //the first 11 spectral numbers

-1/2 -3/8 -5/14 -1/4 -13/56 -3/14 -1/8 -3/28 -5/56 -1/14 0

> def SM = Sp[2]; SM[1..11]; //and their multiplicities

1 2 1 3 2 1 4 2 2 1 6

As the numbers in Sp[1] are ordered by size, we see that there are precisely 10
pairwise different negative spectral numbers. The negative spectral numbers
could also have been computed by applying the command spectralNeg (from
reszeta.lib) to L in the ring R.
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For more examples of Singular applications, see, for instance, [30], [12], [27],
[28], [13], [42] or Singular’s home http://www.singular.uni-kl.de.

3 The Latest Features: SINGULAR 3.0

In the remaining part of this article, we shortly discuss some of the most
important new features of Singular 3.0 : non-commutative computations
over GR-algebras, additional implementations of Gröbner basis algorithms,
absolute primary decomposition, and the concept of dynamic modules (and
name spaces).

3.1 Non-Commutative GR-Algebras

The Singular kernel component Plural7 allows us to compute Gröbner
bases and syzygies over a large class of non-commutative algebras to which
we refer as GR-algebras (here, GR stands for Gröbner-ready). GR-algebras
are obtained from the free non-commutative algebra on x1, . . . , xn

by imposing
specific relations. We write K〈x〉 = K〈x1, . . . , xn

〉 for this free algebra. That
is, K〈x〉 is the non-commutative graded K-algebra with K-vector space basis

B =
{

x
i1
x

i2
· · ·x

iν

∣

∣ ν ∈ N, 1 ≤ i
`
≤ n for all `

}

,

where multiplication and grading are defined in the obvious way. We refer to
the elements of B as words. Moreover, we set

M :=
{

xα = x
α1

1
· · ·x

αn

n
| α ∈ Nn

}

⊂ B .

Since M can be identified with the set of monomials in K[x], each monomial
order > on K[x] induces a total order on M which we again denote by >.
It, thus, makes sense to speak of the leading term L(h) = L

>
(h) of a K-linear

combination h of words in M .

Definition 3.1. A G-algebra R is the quotient of K〈x〉 by a two-sided ideal
J0 generated by elements of type

x
j
x

i
− c

ij
x

i
x

j
− h

ij
, 1 ≤ i < j ≤ n , (1)

where the c
ij

are non-zero scalars in K, and where the h
ij

are K-linear com-
binations of words in M . Further, we require that

(G1) c
ik

c
jk

h
ij
x

k
− x

k
h

ij
+ c

jk
x

j
h

ik
− c

ij
h

ik
x

j
+ h

jk
x

i
− c

ij
c
ik

x
i
h

jk
= 0

for all 1 ≤ i < j < k ≤ n, and that

7The name PLURAL results from the obvious wordplay.
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(G2) there is a global monomial order > on K[x] such that x
i
x

j
> L(h

ij
)

for all i, j.

Each global monomial order on K[x] satisfying (G2) is called an admissible

monomial order for R. We refer to the elements of M as monomials in R.
Note that the “rewriting relations” (1) together with (G2) imply that

each element of R can be represented by a K-linear combination of monomi-
als. More precisely, successively rewriting a word w = x

i1
x

i2
· · ·x

iν
according

to the relations (1), we get w ≡ cxα + h mod J0 , where c ∈ K \ {0}, xα is the
monomial obtained by rearranging the letters of w, and where h is a K-linear
combination of monomials such that L(h) < xα. The condition (G1) guaran-
tees that this representation is uniquely determined. Indeed, for i < j < k, it
guarantees that the result obtained by rewriting x

k
x

j
x

i
in terms of monomials

does not depend on whether we first apply the rewriting relation for the pair
(j, k) or for the pair (i, j). As a consequence, we get that M is a K-vector
space basis for R (see [40]).

The latter observations allow us to extend the theory of Gröbner bases for
ideals and modules over polynomial rings to a theory of left (right) Gröbner
bases for left (right) ideals and modules over G-algebras. Also, division with
remainder (normal forms) and Buchberger’s algorithm can be extended to
G-algebras. And, we may compute two-sided (that is, left and right) Gröbner
bases for two-sided ideals, which allows us to implement quotients of G-
algebras by two-sided ideals:

Definition 3.2. A GR-algebra A is the quotient A = R/J of a G-algebra R

by a two-sided ideal J ⊂ R.

Examples of G-algebras include quasi-commutative polynomial rings (for ex-
ample, the quantum plane with yx = q · xy), universal enveloping algebras of
finite dimensional Lie algebras [4, 39], positive (negative) parts of quantized
enveloping algebras [36], some iterated Ore extensions, some non-standard
quantum deformations [32, 33], Weyl algebras and quantizations of Weyl alge-
bras, Witten’s deformation of U(sl2), Smith algebras, conformal sl2–algebras
[8], some diffusion algebras [34] and many other.

Among the GR-algebras, you find exterior algebras, Clifford algebras,
finite dimensional associative algebras given by structure constants [14] and
many more.

Remark 3.3. At this writing, the implemented algorithms for non-commu-
tative computations over GR-algebras allow us to compute:

• left normal forms and left Gröbner bases for left ideals/modules given
by a finite set of generators (reduce, std);

• left syzygies and free resolutions of left ideals/modules (syz, mres);
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• right normal forms, Gröbner bases, syzygies and free resolutions (by
implementing the opposite algebra via opp, opposite);

• (left) Gröbner bases for two-sided ideals (modules) given by a finite set
of generators (twostd);

• preimages of ideals under ring maps (preimage);

• intersection and quotients of ideals and modules (intersect, modulo);

• central elements and centralizers of elements (center.lib);

• central character decomposition of a module (ncdecomp.lib);

• Gelfand-Kirillov dimension (gkdim.lib).

Based on Singular’s functionality for non-commutative computations, the
library sheafcoh.lib provides commands for computing the cohomology of
coherent sheaves via free resolutions over the exterior algebra8. Implementa-
tions of algorithms for computing direct image sheaves will be available soon.
Further, a library for computations with D-modules is projected.

3.2 Gröbner Basis Computations

Gröbner Bases via slimgb. The study of J.-C. Faugère’s F4 algorithm [17]
for computing Gröbner bases of homogeneous ideals led to the development
and implementation in Singular of a new variant of Buchberger’s algorithm
which is accessible via the slimgb command.

The F4 algorithm relies on a matrix representation for the ideal under
consideration and a ”structured” Gauß algorithm which tries to preserve the
sparseness of the matrix in the process. Similarly9, slimgb is based on an
algorithm which is specifically designed to reduce the “weighted length” of
the intermediate polynomials produced on its way (taking into account the
size of the coefficients and the number of terms).

In implementing the algorithm, much experience and many tricks from
the previous implementations of Gröbner basis algorithms in Singular have
been used: for instance, the polynomial representation [6], geobuckets [49],
and bit vector support for monomials (speeding up divisibility tests [9]).

It is still an experimental feature — we have to learn more about improv-
ing the applied strategies. However, timings on several benchmark examples

8At this writing, custom-built, fast implementations specializing on particular G- and
GR-algebras (such as the Weyl algebra or the exterior algebra) are still missing in Singu-

lar. As a result, the Singular implementation of the algorithm of Eisenbud, Fløystad,
and Schreyer [15] cannot yet compete with its Macaulay2 implementation.

9To have a fast implementation of the F4 algorithm itself would require an implemen-
tation of its fast matrix representation and, thus, a rewriting of most of the polynomial
arithmetic in Singular’s kernel.
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are very promising. At this writing, we can already say that typically the use
of slimgb instead of std is advisable for Gröbner basis computations over
transcendental extensions of prime fields.

It is planned to integrate the newly implemented algorithm into the
Gröbner basis engine of Singular’s kernel, and to make use of variants of it
for elimination and syzygy computations, too.

Gröbner Walk Algorithms. It is well-known that the performance of
Buchberger’s algorithm is sensitive to the choice of monomial order. A
Gröbner basis computation with respect to a less favorable order such as
the lexicographic order may easily run out of time or memory even in cases
where a Gröbner basis computation with respect to a more efficient order
such as >dp is very well feasible. Gröbner walk (or, more generally, Gröbner
basis conversion) algorithms take their cue from this observation.

The basic idea of a Gröbner walk conversion algorithm is to approach
the target Gröbner basis in several steps, “walking” along a path through the
Gröbner fan. In each step, a Gröbner basis computation with respect to an
“intermediate” monomial order is performed. There are several strategies for
choosing the path through the Gröbner fan, leading to different variants of
the algorithm. See [11], [3], [2], and [48] for details.

At this writing, the Singular implementation of the Gröbner walk al-
gorithms is still affected in its efficiency by the internal limitations on weight
vectors (while walking, each intermediate monomial order is defined as an
order with an extra weight vector). Nevertheless, the commands provided by
the library grwalk.lib, and the kernel command frwalk often yield a result
in cases where a direct Gröbner basis computation fails.

Janet Bases. Let M be the set of all monomials in K[x] = K[x1, . . . , xn
],

K any field, and let F ⊂M be a finite subset. Janet [35] introduced an
(involutive) division by elements of F : A monomial xβ

∈ F is called a Janet

divisor of a term cxα (w.r.t. F ) if xβ divides cxα and if the quotient xα
/xβ is

a product of multiplicative variables with respect to xβ in F . Here, a variable
x

i
is called a multiplicative variable with respect to xβ in F if for each xγ

∈ F

we have γ1 = β1, . . . , γ
i−1 = β

i−1 and γ
i
≤ β

i
. We write x

i
∈ Mult(xβ

, F ).
Otherwise, x

i
is called non-multiplicative (with respect to xβ in F ).

Fixing a global monomial ordering > on K[x], this concept of divisibility
leads to a notion of division with remainder and of a Janet normal form:
Let J = {f1, . . . , fr

} ⊂ K[x] be a finite set, and let f ∈ K[x]. Successively
(Janet) dividing f by elements of J , we get a remainder h such that no term
of h has a Janet divisor in the set LM

>
(F ) = {LM

>
(f) | f ∈ F} ⊂M .10

10Here, LM>(f) denotes the leading monomial of f , that is, L>(f) = cLM>(f) for some
scalar c ∈ K.
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We refer to h as a Janet normal form for f with respect to J and we write
h = NF

J
(f | J ).

Definition 3.4. A finite set J ⊂ K[x] is called a Janet basis (for the ideal
I ⊂ K[x] generated by J ) if for each f ∈ J we have

(a) NF
J
(f · x

i
,J ) = 0 for each x

i
6∈ Mult

(

LM
>
(f), LM

>
(J )

)

, and

(b) no term of f has a Janet divisor in the set LM
>
(J ) \ {LM

>
(f)}.

A Janet basis J is called minimal if each other Janet basis J ′ for I satisfies
LM

>
(J ) ⊂ LM

>
(J ′).

Note that each Janet basis for I is also a Gröbner basis for I (with respect
to >). But, not each Gröbner basis is a Janet basis. Also, a minimal Janet
basis is usually far from being a minimal (reduced) Gröbner basis. However, a
minimal (reduced) Gröbner basis can easily be computed from a Janet basis
by removing the irrelevant generators.

Singular provides an implementation of the algorithm by V.P. Gerdt,
Y.A. Blinkov and D.A. Yanovich [22, 23] for computing a minimal Janet basis.
It is accessible by the janet command:

> ring R = 0, (x,y), dp;

> ideal J = x2y,x5;

> janet(J); //compute minimal Janet basis

Length of Janet basis: 4

_[1]=x2y

_[2]=x3y

_[3]=x4y

_[4]=x5

> janet(J,1); //compute minimal Groebner basis via a Janet basis

Length of Janet basis: 4

_[1]=x2y

_[2]=x5

The computation of a Janet basis allows no choices in the selection of polyno-
mials when reducing newly generated elements. It may avoid the intermediate
expression swell which frequently appears when computing a Gröbner basis
by Buchberger’s algorithm. However, one can hardly predict when computing
a minimal Gröbner basis via a Janet basis is superior to computing it by a
variant of Buchberger’s algorithm.

3.3 Absolute Primary Decomposition

The new Singular library absfact.lib by G. Lecerf provides the command
absFactorize for absolutely factorizing a multivariate polynomial f ∈ Q[x],
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that is, for computing its factorization over the algebraic closure Q. The
underlying algorithm first factorizes f over Q, say f = f1 · · · · fs

(applying
the factorize command). Then, it uses Trager’s [47] idea to compute an
absolutely irreducible factor of f

i
by factorizing over some finite extension

field L of Q which is chosen such that {f = 0} has a smooth point with
coordinates in L. Finally, a minimal extension field is determined making use
of the Rothstein-Trager partial fraction decomposition algorithm (see [10] for
more on this).

Relying on absFactorize, the library primdec.lib provides the new
command absPrimdecGTZ for computing an absolute primary decomposition
of an ideal I ⊂ Q[x].

Absolute primary decomposition is used, for instance, in the context of
resolution of singularities when computing the intersection matrix for the
exceptional divisors (see Example 2.7).

3.4 Dynamic Modules

Besides writing libraries, a user has now an alternative way of adding new
functionality to Singular: writing a dynamic module.11 In contrast to a li-
brary, which collects procedures written in the Singular programming lan-
guage, a dynamic module consists of procedures written in C/C++. A proce-
dure in a dynamic module is not parsed each time the corresponding command
is executed, but just once at compile time. This provides a great improvement
in speed if the procedure contains loops with a large number of commands to
be executed.

There are several reasons for using a dynamic module. For instance, one
should use a dynamic module if one wants to

• access internal functions and data structures of Singular’s kernel;

• speed up a small, time critical routine;

• have access to external C/C++ libraries or to other programs;

• separate large but rarely used program parts from Singular’s kernel
(to keep the kernel of moderate size).

• replace some routines of Singular’s kernel by other routines (e.g., for
testing different implementations, debugging, etc.).

An important example for the use of dynamic modules (by Singular’s
programmers) are the basic polynomial operations. For the 15 most impor-
tant routines, there exist 1651 implementations which are collected in four

11The implementation of dynamic modules is based on so-called “dynamic libraries” and
the abilities of the dynamic linker of the system.
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dynamic modules (p_Procs_FieldGeneral.so, p_Procs_FieldIndep.so,
p_Procs_FieldQ.so and p_Procs_FieldZp.so). When defining a basering,
Singular decides which of the modules has to be linked to the kernel.

Of course, writing a dynamic module is not as simple as writing a Sin-

gular library. Besides the knowledge of programming in C/C++, it requires
also some knowledge about the way the Singular kernel works. We refer to
[19] for information on how to write a dynamic module.

The user defined dynamic modules appear like a library. They can be
loaded into a Singular session by applying the load command. Name con-
flicts are avoided by encapsulating all identifiers of a module into a separate
name space.

Example 3.5. An example of a user written dynamic module is kstd.so,
which provides the command Kstd for computing a partial standard basis
(that is, in the process of computing a standard basis for a module all those
vectors whose leading term involves gen(i), i ≥ k, for some given bound k,
are ignored when forming the critical pairs: see [18] for details). It is based on
a routine of the Singular kernel (used to compute syzygies, see [25]) which
is not available via the interpreter.

Below, we print the important part of the module declaration file for
kstd.so. It defines a procedure kstd which takes a module h1 and an int k

and, after checking the type of the arguments and performing some technical
operations, it calls the standard basis engine via kStd with the appropriate
arguments and returns the result to the interpreter (see [19] for details):

%{

#include "ideals.h"

#include "ring.h"

#include "kstd1.h"

#include "prCopy.h"

%}

package="kstd";

%procedures

module kstd ( module h1, int k)

{

%declaration;

ideal s_h1; ideal s_h3; int j;

ring orig_ring; ring syz_ring;

%typecheck;

....

s_h3 = kStd(s_h1,NULL,testHomog,&w,NULL,k);

....

%return = (void *)s_h3;

}
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%C

The following Singular session shows kstd at work:

> load("kstd.so");

> ring R = 0, x, dp;

> module M = [x,0], [x+1,x2+x], [0,x2];

> print(M);

x,x+1, 0,

0,x2+x,x2

> print(Kstd::kstd(M,1)); //partial standard basis

1,0, x,

x,x2,0

> print(std(M)); //(minimal) standard basis

x,1,

0,x

Acknowledgements

Development of the system Singular was supported by the DFG and the
Stiftung Rheinland-Pfalz für Innovation, which we kindly acknowledge.

References

[1] Abo, H.; Schreyer, F.-O.: Exterior algebra methods for the construction
of rational surfaces in the projective fourspace. These proceedings.

[2] Amrhein, B.; Gloor, O.: The Fractal Walk. In: B. Buchberger and F. Win-
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[19] Frühbis-Krüger, A.; Krüger, K.; Schönemann, H.: Dynamic Modules in
Singular. Reports On Computer Algebra 32. ZCA, TU Kaiserslautern
(2003).13
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The Patchworking Construction in

Tropical Enumerative Geometry

Eugenii Shustin

Dedicated to Gert-Martin Greuel on the occasion of his 60th birthday

Abstract

We prove two new patchworking theorems which describe deforma-
tions of algebraic curves inscribed into a family of algebraic surfaces
such that the central surface is reducible and a general surface is ir-
reducible. These theorems justify all known applications of tropical
geometry to the enumeration of real and complex nodal curves on
toric surfaces. They may serve for similar applications to the enumer-
ation of curves with more complicated singularities. In addition, using
the patchworking techniques, we classify certain planar deformations
of non-planar curve singularities which appear as an element of the
tropical approach to the enumeration of curves on surfaces.

1 Introduction

The rapid development of tropical algebraic geometry over the last years has
led to interesting applications of singular algebraic curves in enumerative ge-
ometry, proposed by Kontsevich (see [6]). The first result in this direction has
been obtained by Mikhalkin [7, 8], who counted curves with a given number
of nodes on toric surfaces via lattice paths in convex lattice polygons. It has
further been applied to the enumeration of real rational curves on Del Pezzo
surfaces [3, 4, 16] and of complex rational curves in higher-dimensional toric
varieties [9]. Patchworking naturally appears as a part of the tropical approach
to enumerative geometry [8, 15, 16]. In our treatment of the patchworking, we
follow the version of [15, 16]. The main goal of the paper is to present a new
patchworking theorem, which not only covers the needs of [15, 16], where one

1991 Mathematics Subject Classification. 14H15, 14H20
Key words. singular algebraic curve, equisingular family, toric variety
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counted nodal and cuspidal curves, but can be applied to the enumeration
problem for curves with more complicated singularities.

In 1979–80, O. Viro [19, 20, 21, 22] invented a patchworking construction
for real non-singular projective algebraic hypersurfaces. We would like to
mention that almost all known topological types of real non-singular algebraic
curves are realized in this way. In general, the initial data of the construction
consist of

• Y → (C, 0), a one-parametric flat family of algebraic varieties of di-
mension n ≥ 2, with irreducible fibres Y

t
, t 6= 0, and reduced reducible

central fibre Y0;

• a line bundle L on Y ;

• a hypersurface X0 ⊂ Y0, being the zero locus of a section ξ0 of L0 = L
∣

∣

Y0

.

The construction extends the section ξ0 to a section ξ of L, and thus, the
hypersurface X0 to a flat family of hypersurfaces X

t
⊂ Y

t
, t ∈ (C, 0), such

that the hypersurfaces X
t
, t 6= 0, inherit some properties of X0.

In the early 1990’s the author suggested to use the patchworking con-
struction for tracing properties of objects, defined by polynomials, other than
in the original Viro method. For example, for tracing prescribed singularities
of algebraic hypersurfaces [10, 13, 14], critical points of polynomials [12, 13],
singular points and limit cycles of planar polynomial vector fields [5], resul-
tants of bivariate polynomials [11].

In the present paper, we restrict ourselves to the case n = 2. We consider
families of surfaces and curves in these surfaces, and we trace the property
to possess a certain collection of singularities. As a result, we prove a patch-
working theorem for curves on toric surfaces (Theorem 2.4, Section 2.3) which
is sufficient for applications to a tropical calculation of Gromov-Witten and
Welschinger invariants on toric surfaces as in [15, 16, 17]. Comparing with
[18], we notice that the results of [18] are insufficient to treat the needs of
tropical enumerative geometry, but they cover a wider class of situations. Fur-
thermore, we generalize our result to the case of curves on arbitrary surfaces
(Theorem 3.3, Section 3.3).

We notice that in [10, 13, 14] we always supposed that the components
of the hypersurface X0 are reduced and meet the singular locus of the variety
Y0 transversally. However, the degenerations which appear in the tropical
enumeration of curves (see [15, 16]) can be more complicated. That is, X0 may
be non-reduced, and its components may be not transversal to the singular
locus of Y0. The novelty of the patchworking theorems presented in this paper
is that, in the case n = 2, we allow curves X0 with such properties.

Another result of the paper concerns local deformations of non-planar
curve singularities, which appear in tropical limits of curves on surfaces. More
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precisely, in the above notation, we assume that n = 2, two components Y
′
0
, Y

′′
0

of the surface Y0 intersect along a line L, a point p ∈ L is non-singular for
L and an isolated singular point for a curve X0 ⊂ Y0. We ask about possi-
ble deformations of the germ (X0, p) inscribed into the family Y

t
, t ∈ (C, 0).

Using Theorem 3.3, we determine how many nodes may appear in such de-
formations. This question naturally arises in the tropical count of nodal and
cuspidal curves [8, 15], and potentially in a tropical enumeration of curves
with more complicated singularities.

Throughout the paper, we work over the complex field C. However, if the
initial data of the patchworking construction are defined over the reals, then
the resulting family is real as well. In particular, the embedded topology of
the real point set of the constructed curves can be obtained precisely as in
Viro’s “gluing” procedure [19, 20, 21, 22] (cf. also [13, 14]). But we do not
focus on this.

2 Patchworking of Curves on Toric Surfaces

2.1 Initial Data for Patchworking

Let ∆ be a convex non-degenerate lattice polygon, lying in the nonnegative
quadrant R2

+
⊂ R2. By Tor(∆) we denote an associated toric variety. The

sides of ∆ determine toric divisors in Tor(∆), whose union we denote by
Tor(∂∆). By L(∆) denote the tautological line bundle on Tor(∆).

Let ∆ = ∆1∪ . . .∪∆
N

be a subdivision of ∆ into non-degenerate convex
lattice polygons, which are linearity domains of a convex piece-wise linear
function on ∆.

Let a
ij
∈ C, (i, j) ∈ ∆∩Z2, be such that a

ij
6= 0 as far as (i, j) is a vertex

of any polygon ∆1, . . . , ∆N
. The equations

fk
(x, y) :=

∑

(i,j)∈�k

a
ij
x

i

y
j = 0 (1)

define curves C
k
∈ |L(∆

k
)| of the toric surfaces Tor(∆

k
), k = 1, . . . , N .

We impose the following restrictions to the curves C1, . . . , CN
:

(C1) if C is a multiple component of Ck
, 1 ≤ k ≤ N , then C is defined by a

binomial equation (in particular, C ' P1 and C
2 = 0), furthermore, C

crosses any other component of C
k

transversally and these intersections
lie in the big torus (C∗)2 = Tor(∆

k
)\Tor(∂∆

k
);

(C2) if σ is a side of ∆k
, and a point p ∈ Tor(σ) belongs to a non-multiple

component of C
k
, then in suitable local coordinates u, v in a neighbor-

hood of p in Tor(∆
k
), the line Tor(σ) is represented by v = 0, and the
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curve C
k

is represented by

ϕ
k,p

(u, v) :=
∑

i�m(k,p)+jm≥m�m(k,p)

α
ij
u

i

v
j = 0 , (2)

where m(k, p), m are positive integers (m being the intersection number
(Tor(σ) · C

k
)
p
), and the quasihomogeneous polynomial

ϕ
0

k,p
(u, v) =

∑

i�m(k,p)+jm=m�m(k,p)

α
ij
u

i

v
j

is non-degenerate, i.e., has no critical points outside the origin.

To introduce additional data, consider all the pairs (k, p), where 1 ≤ k ≤ N ,
p ∈ Tor(σ), σ = ∆

k
∩∆

l
a common edge. We then construct a graph G, whose

vertices are the above pairs, and two pairs (k, p) and (l, q) are joined by an
arc if (i) k = l and p, q belong to the same multiple component of C

k
, or (ii)

p = q ∈ σ, σ = ∆
k
∩ ∆

l
. Denote by Θ the set of the connected components

of G. These components all are segments. We denote by Θ
s
, s = 0, 1, 2, the

set of the elements θ ∈ Θ such that precisely s endpoints (k, p) of the graph
θ correspond to isolated singular (or non-singular) points p ∈ C

k
such that

(C
k
· Tor(σ))

p
≥ 2, p ∈ Tor(σ), σ ⊂ ∂∆

k
. Further on we use the notation

(k, p) ∈ θ ∈ Θ1 ∪ Θ2 to designate that (k, p) is an endpoint of the graph θ

and p is an isolated singular point of C
k
.

If θ ∈ Θ1, (k, p) ∈ θ, p is an isolated singular point of C
k
, locally given

by (2), then by a deformation pattern associated with θ we call any curve
C

θ
⊂ Tor(∆

θ
), where ∆

θ
is the triangle with the vertices (0, 0), (m, 0), and

(0, m(k, p)), defined by a polynomial f
θ
(u, v), whose truncation to the edge

[(m, 0), (0, m(k, p))] (i.e., the sum of monomials of the given polynomial, cor-
responding to the integral points in the edge) coincides with ϕ0

k,p
(u, v), and

the coefficient of um−1 vanishes.
If θ ∈ Θ2, (k, p), (l, q) ∈ θ, p is an isolated singular point of C

k
, locally

given by (2), q is an isolated singular point of C
k
, locally given by

ϕ
l,q

(u, v) :=
∑

i�m(l,q)+jm≥m�m(l,q)

b
ij
u

i

v
j = 0 ,

then by a deformation pattern associated with θ we call any curve C
θ
⊂

Tor(∆
θ
), where ∆

θ
is the triangle with the vertices (0,−m(l, q)), (m, 0),

and (0, m(k, p)), defined by a polynomial f
θ
, whose truncation to the

edge [(m, 0), (0, m(k, p))] coincides with ϕ
0

k,p
(u, v), truncation to the edge

[(m, 0), (0,−m(l, q))] coincides (up to a constant factor) with ϕ0

l,q
(u, v

−1), and
the coefficient of um−1 vanishes.

Notice only that the vanishing of the coefficient of um−1 in f
θ

is not a
restriction, since can be achieved by a suitable shift u 7→ u + a.
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2.2 Transversality

Transversality of equisingular strata provides sufficient conditions for the
patchworking (cf. [13, 14]).

Let S be a topological or (contact) analytic equivalence of isolated planar
curve singular points. We intend to define the S-transversality for triples
(∆

k
, ∆−

k
, C

k
), 1 ≤ k ≤ N , where ∆−

k
is a connected (or empty) union of some

edges of ∆
k
, and for deformation patterns.

Pick a triple (∆
k
, ∆−

k
, C

k
), 1 ≤ k ≤ N .

Denote by Singiso(C
k
) the set of isolated singular points of C

k
. If

p ∈ Singiso(C
k
) ∩ (C∗)2, denote by M

S(C
k
, p) the germ at C

k
of the S-

equisingular stratum of (C
k
, p) in |L(∆

k
)|. The (projective) Zariski tangent

space to MS(C
k
, p) at C

k
is formed by the curves {g = 0} ∈ |L(∆

k
)|, with

g ∈ IS(C
k
, p) ⊂ OTor(�k),p, where I

S(C
k
, p) is the equisingular ideal or the

Tjurina ideal (see [1, 2, 23]), according to whether S is the topological or
analytic equivalence.

Let p ∈ C
k
∩ Tor(σ) be an isolated singular or nonsingular point of C

k
,

where σ is an edge of ∆
k
. Let u, v be local coordinates in a neighborhood of

p in Tor(∆
k
) as introduced in condition (C2), Section 2.1. The ideals

I
sqh

0
(C

k
, p) =

{

g ∈ OTor(�k),p

∣

∣

∣

∣

∣

g =
∑

i�m(k,p)+jm≥m�m(k,p)

β
ij
u

i

v
j

)

,

I
sqh(C

k
, p) = I

sqh

0
(C

k
, p) +

〈

∂ϕk,p

∂u

〉

naturally define the linear subsystems M
sqh

0
(C

k
, p), M

sqh(C
k
, p) in |L(∆

k
)|,

respectively.
Let Cred

k
be the reduction of C

k
, and let p ∈ Singiso(Cred

k
)\Singiso(C

k
).

Then p is an intersection point of two distinct components {g ′ = 0}, {g′′ = 0}
of C

k
having multiplicities m

′
, m

′′, respectively, with m
′ +m

′′
> 2. Denote by

M eg(C
k
, z) the closure of the germ at C

k
of the family of curves C ∈ |L(∆

k
)|,

having m
′
m

′′ nodes in a neighborhood of p. This germ is smooth, provided
that its (projective) Zariski tangent space at C

k
has codimension m

′
m

′′ (cf.
[15, Section 5.2]). More precisely

Lemma 2.1. (i) The (projective) Zariski tangent space to M
eg(C

k
, p) at

C
k

is formed by the curves {g = 0}, g ∈ Λ(∆
k
), with g ∈ I

eg(C
k
, p) :=

〈(g′)m
′

, (g′′)m
′′

〉 ⊂ OTor(�k),p.

(ii) Let ∆
k

be a parallelogram with a pair of non-parallel edges σ1, σ2,

the curve C
k

given by {f
k

= 0}, where f
k

is a product of a monomial and

binomials. Then the germ M eg(C
k
) =

⋂

z
M

eg(C
k
, z), where z runs over all

intersection points of distinct components of C
k
, is smooth of codimension
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Area(∆
k
) in Λ(∆

k
), and intersects transversally with the space of curves,

defined by polynomials f with Newton polygon ∆
k
such that f

σi = f
σi

k
, i = 1, 2.

Proof. (i) In a neighborhood of z, the curves C ∈ M eg(C
k
, p) are unions

of m′ + m
′′ discs (counting multiplicities), and are represented by equations

((g′)m
′

+ g
′
1
)((g′′)m

′′

+ g
′′
1
) = 0 with sufficiently small g

′
1
, g

′′
1
; thus, the claim

follows.
(ii) Observe that the number of the intersection points of {f σ1

k
= 0} and

{f
σ2

k
= 0} in (C∗)2 is equal to the area of the parallelogram ∆

k
, divided by

the lattice lengths of σ1 and σ2. Then we derive the required statement, when
showing that f

k
is the only polynomial with Newton polygon ∆

k
, the fixed

truncations on σ1, σ2, and belonging to the ideal 〈fσ1

k
, f

σ2

k
〉
w
⊂ OC2

,w
, for

any point w ∈ {f
σ1

k
= 0} ∩ {fσ2

k
= 0} ∩ (C∗)2, where f

σ1

k
and f

σ2

k
are the

truncations to the edges σ1, σ2, respectively. The latter claim immediately
follows from Bézout’s theorem.

Definition 2.2. In the above notation, let ∆+

k
be the union of the edges σ

of ∆
k

such that σ 6⊂ ∆−
k
. The triad (∆

k
, ∆−

k
, C

k
) is called S-transversal, if all

the germs



















MS(C
k
, p), p ∈ Singiso(C

k
) ∩ (C∗)2

,

M eg(C
k
, p), p ∈ Singiso(Cred

k
)\Singiso(C

k
),

M
sqh

0
(C

k
, p), p ∈ C

k
∩ Tor(∆−

k
) is not a non-isolated singular point,

M sqh(C
k
, p), p ∈ C

k
∩ Tor(∆+

k
) is not a non-isolated singular point

are smooth of expected dimension and intersect transversally in |L(∆
k
)|.

For k = 1, . . . , N , introduce the zero-dimensional scheme Z
k
⊂ Tor(∆

k
), de-

fined at the points p ∈ C
k

mentioned in Definition 2.2 by the ideals I
S(C

k
, p),

Ieg(C
k
, p), I

sqh

0
(C

k
, p), I

sqh(C
k
, p), respectively.

Definition 2.3. Given θ ∈ Θ1 ∪ Θ2, i = 1, 2, a deformation pattern C
θ
,

corresponding to θ, is called S-transversal, if the triad (∆
θ
, ∆−

θ
, C

θ
) is S-

transversal, where ∆−
θ

is the union of those edges of ∆
θ

which are neither
vertical nor horizontal.

For various cohomological or numerical criteria of S-transversality we refer
to [15, Section 5.2].

2.3 Formulation of the Patchworking Theorem

The convex piece-wise linear functions on ∆, whose linearity domains are
exactly ∆1, . . . , ∆N

, form a cone, and we choose any generic such function,
defined over Q, then multiply it by a suitable integer in order to get a function
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ν : ∆→ R, which is integral-valued at integral points. We, moreover, assume
that in all transformations and extensions of ν in the proof of Theorem 2.4,
it remains integral-valued at integral points. Notice that then the faces of
Graph(ν) are Z-congruent to ∆1, . . . , ∆N

, respectively. The overgraph

˜∆ =
{

(α, β, γ) ∈ R3
∣

∣ (α, β) ∈ ∆, γ ≥ ν(α, β)
}

defines a toric three-fold Y with a natural projection Tor(˜∆) → C, whose
fibres Y

t
, t 6= 0, are isomorphic to Tor(∆), and the central fibre Y0 splits into

the union of Tor(∆
k
), k = 1, . . . , N . The curves C

k
, k = 1, . . . , N , from the

initial data can be lifted to these components, forming a divisor C (0)
⊂ Y0,

which we are going to extend up to a family C (t)
⊂ Y

t
, t ∈ (C, 0).

Denote by G the adjacency graph of the polygons ∆1, . . . , ∆N
, and by

G the set of orientations of G, which have no oriented cycles and induce a
(natural) linear order on any element θ ∈ Θ. For Γ ∈ G, denote by ∆−

k
(Γ)

the union of those edges of ∆
k

which correspond to arcs of G, which are Γ-
oriented inside ∆

k
. We assume that ∆−

k
(Γ) is connected for any k = 1, . . . , N .

Denote by Arc(Γ) the set of ordered pairs (k, l), where ∆
k
, ∆

l
have a common

edge, and the corresponding arc of Γ is emanating from ∆
k

to ∆
l
.

Theorem 2.4. Under the assumptions of sections 2.1, suppose that all the

given deformation patterns are S-transversal, and there is Γ ∈ G such that

every triad (∆
k
, ∆−

k
(Γ), C

k
) is S-transversal, k = 1, . . . , N . Then there exists

a flat family of curves C (t), t ∈ (C, 0), including the curve C
(0)
⊂ Y0 and such

that the curves C(t)
∈ |L(∆)|, t 6= 0, satisfy the following condition: there

is an S-equivalent 1-to-1 correspondence between Sing(C (t)) and the disjoint

union of

• the sets Singiso(C
k
) ∩ (C∗)2, k = 1, . . . , N ,

• the sets Sing(C
θ
), θ ∈ Θ1 ∪ Θ2,

• the set of
∑

N

k=1

∑

p
dimOC2

,p
/I

eg(C
k
, p) nodes, where p runs over

Sing(Cred

k
)\Singiso(C

k
), k = 1, . . . , N .

2.4 Proof of the Patchworking Theorem

Before presenting the argument in all detail, we would like to comment on
the main ideas behind. Our treatment of the singularities of C (0), which lie
in the big tori of the components of Y0 =

⋃

i
Tor(∆

i
), is the same as appears

in [13, 14], where we show that the conditions for the S-equisingular defor-
mation are governed by independent sets of parameters, due to the transver-
sality conditions imposed. This treatment is set forth in the following Steps
1-5. Our way to deform the singularities of C (0) lying on the intersection lines
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of the components of Y0 and non-isolated singularities (Steps 6 and 7 below)
geometrically can be viewed as a refinement of the patchworking data: we ad-
ditionally blow up1

Y at singular points of C
(0) on Sing(Y0) or along multiple

components of C(0), which, in fact, brings the data to the situation with only
non=isolated singularities and transverse intersection of C

(0) with Sing(Y0)
as considered in [13, 14]. Geometry of such blow up is reflected in Figure 1 il-
lustrating the formal consideration. In this connection we only point out that
the statement of Theorem 2.4 does not reduce directly to the patchworking
theorems in [13, 14] by performing blow up as indicated. The transversal-
ity conditions, required after blow up are more restrictive than in Theorem
2.4. For example, all the ideals I sqh(C

k
, p), participating in the transversality

conditions, should be replaced by I
sqh

0
(C

k
, p), and the latter restriction does

not apply to the problems, appearing in the tropical enumerative geometry
[15, 16].

Step 1. Fix k = 1, . . . , N . Denote by P(∆
k
) the linear space of polynomials

spanned by the monomials xi
y

j, (i, j) ∈ ∆
k
∩ Z2. We shall split this linear

space into subspaces and choose specific bases in them. Put

P(∆−
k
) = Span{xi

y
j

, (i, j) ∈ ∆−
k
}, P(∆−

k
) = Span{xi

y
j

, (i, j) ∈ ∆
k
\∆−

k
} .

The S-transversality of the triad (∆
k
, ∆−

k
, C

k
) yields by Definition 2.2 the

surjectivity of the map pr
k

: P(∆
k
) → H

0(Z ′
k
,O

Z
′

k
), where Z

′
k

is the part of
the zero-dimensional scheme Z

k
, supported at points on Tor(∂∆

k
), where Z

k

is introduced after Definition 2.2. Since f
k
∈ Ker(pr

k
) and ∆−

k
is connected,

Ker(pr
k
) = Span{f

k
} ⊕ (Ker(pr

k
) ∩ P(∆−

k
)) .

The variety germs MS(C
k
, p) and M

eg(C
k
, p), listed in Definition 2.2 and

related to singular points p of C
k

in (C∗)2, naturally lift to germs at f
k

(f
k

being defined in (1)) of varieties in P(∆
k
). The latter germs we extend

up to the germs ˜MS(C
k
, p) and ˜M

eg(C
k
, p) at f

k
of the corresponding eq-

uisingular varieties in the space P(∆). Due to the S-transversality condi-

tion, the intersection M
k

of all the germs ˜MS(C
k
, p), ˜M eg(C

k
, p), correspond-

ing to the singular points of C
k

in (C∗)2, is smooth of expected codimen-
sion n

k
=
∑

p
dimOC2

,z
/I

S(C
k
, p) +

∑

p
dimOC2

,p
/I

eg(C
k
, p) in P(∆). Fur-

thermore, M
k

intersects transversally with Ker(pr
k
) ∩ P(∆−

k
) in P(∆). That

is, in a neighborhood of f
k
, this germ is given by a system of analytic equations

�
(k)

1
(F ) = . . . = �(k)

nk
(F ) = 0 , (3)

1We use weighted blow ups (cf. [18])
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where F stands for a variable polynomial in P(∆), and there is a set B
k

of
n

k
linearly independent elements of Ker(π

k
) ∩ P(∆−

k
) such that

det

(

∂{�
(k)

i
(F ), i = 1, . . . , n

k
}

∂B
k

)

∣

∣

∣

∣

F=Fk

6= 0 . (4)

Moreover, the elements of B
k

can be chosen as the disjoint union of sets B
k,p

,
p ∈ Sing(Cred

k
) such that B

k,p
projects to a basis of the complex vector space

OC2
,p
/I

S(C
k
, p) or OC2

,p
/I

eg(C
k
, p), according as p ∈ Singiso(C

k
) ∩ (C∗)2 or

p ∈ Sing(Cred

k
)\Singiso(C

k
), and, in addition B

k,p
projects to zero in any other

such space corresponding to any point p′
6= p ∈ Sing(Cred

k
) ∩ (C∗)2.

Step 2. Under the hypotheses of Step 1, we choose a basis of H0(Z ′
k
,O

Z
′

k
)

reflecting its splitting

⊕

p∈Ck∩Tor(�
−

k
)\Cnr

k

OTor(�k),p/I
sqh

0
(C

k
, p) ⊕

⊕

p∈Ck∩Tor(�
+

k
)\Cnr

k

(Ck �Tor(�
+

k
))p≥2

OTor(�k),p/I
sqh(C

k
, p) ,

(5)
where C

nr

k
stands for the union of the multiple components of C

k
.

For a point p, occurring in the above splitting, we have local coordinates
u, v, introduced in condition (C2), Section 2.1, in which I

sqh

0
(C

k
, p) is gener-

ated by monomials lying on or above the segment [(0, m(k, p)), (m, 0)]. Then
we can choose the monomial basis

u
i

v
j

, i ·m(k, p) + jm < m ·m(k, p) , (6)

for OTor(�k),p/I
sqh

0
(C

k
, p), and the monomial basis

u
i

v
j

, i ·m(k, p) + jm < m ·m(k, p), (i, j) 6= (m− 1, 0) , (7)

for OTor(�k),p/I
sqh(C

k
, p).

Take a point p ∈ C
k
∩Tor(∆+

k
)\Cnr

k
such that (C

k
·Tor(∆+

k
))

z
≥ 2. In the

local coordinates u, v, the ideal I sqh(C
k
, p) is generated by monomials lying on

or above segment [(0, m(k, p)), (m, 0)] and by ∂ϕ
k
/∂u. We lift the monomial

basis (7) to polynomials π
(k,p)

ij
∈ P(∆

k
), which can be chosen obeying the

following restrictions:

• π
(k,p)

ij
vanishes in all summands of (5) corresponding to points different

from p,

• π
(k,p)

ij
belongs to P(∆

k
\∆−

k
),

• π
(k,p)

ij
with j > 0 does not contain the monomials u

a
v

b, (a, b) ∈ σ, where
p ∈ C

k
∩ Tor(σ).
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Similarly, if p ∈ C
k
∩Tor(∆−

k
) such that (C

k
·Tor(∆−

k
))

p
≥ 2, then, in the

local coordinates u, v, the ideal I
sqh

0
(C

k
, p) is generated by monomials lying

on or above segment [(0, m(k, p)), (m, 0)], and we lift the monomial basis (6)

to polynomials π
(k,p)

ij
∈ P(∆

k
), which can be chosen obeying the following

restrictions:

• π
(k,p)

ij
vanishes in all summands of (5) corresponding to points 6= p,

• π
(k,p)

ij
, j > 0, belongs to P(∆

k
\∆−

k
).

Step 3. Let θ ∈ Θ, C
θ
⊂ Tor(∆

θ
) the given deformation pattern, defined by a

polynomial f
θ
with Newton polygon ∆

θ
. Assume that P(∆

θ
) is embedded into

some finite-dimensional linear space V of polynomials. The S-transversality of
the deformation pattern C

θ
means that the germ at f

θ
of the S-equisingular

stratum in V, corresponding to Sing(C
θ
), is smooth of expected dimension

(which we denote by n
θ
), and is the intersection of smooth analytic transverse

hypersurfaces �θ

1
(F ) = 0, . . . , �θ

nθ
(F ) = 0, F ∈ V , and furthermore, there is

the set B
θ

of n
θ

coefficients of monomials (i, j) ∈ ∆
θ
\∆−

θ
, such that

det

(

∂{�θ

i
(F ), i = 1, . . . , n

θ
}

∂{B
θ
}

) ∣

∣

∣

∣

F=fθ

6= 0 .

Step 4. We intend to write a formula for the desired family of polynomials f

with unknown coefficients, which then will be found as a solution to certain
system of equations.

For k = 1, . . . , N , the restriction ν
∣

∣

�k
is a linear function λ

k
(i, j) = α

k
i+

β
k
j + γ

k
. Introduce a C-linear map

Tk,t
: C[x, y, x

−1
, y

−1]→ C[x, y, x
−1

, y
−1], T

k,t
(xi

y
j) = x

i

y
j

t
λk(i,j)

, t 6= 0 .

Put

f(x, y) =
∑

(i,j)∈�

a
ij
x

i

y
j

t
ν(i,j) +

N
∑

k=1

∑

h∈Bk

c
h
T

k,t
(h(x, y))

+
∑

(k,p)∈θ∈Θ

p∈Tor(σ), σ⊂�
+

k

∑

i�m(k,p)+jm<m�m(k,p)

(i,j)6=(m−1,0)

tc
(k,p)

ij
T

k,t
(π

(k,p)

ij
(x, y))

+
∑

(k,p)∈θ∈Θ

p∈Tor(σ), σ⊂�
−

k

∑

i�m(k,p)+jm<m�m(k,p)

j>0

tc
(k,p)

ij
T

k,t
(π

(k,p)

ij
(x, y)) , (8)

where all the coefficients c
h

= c
h
(t), c

(k,p)

ij
= c

(k,p)

ij
(t) are analytic functions in

a neighborhood of zero.
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Step 5. Pick k = 1, . . . , N , and consider the polynomial

f̂
k
(x, y) := T

−1

k,t
(f(x, y)) =

∑

(i,j)∈�k

a
ij
x

i

y
j +

∑

h∈Bk

c
h
h(x, y)

+
∑

(i,j)∈�\�k

a
ij
x

i

y
j

t
ν(i,j)−λk(i,j) +

∑

l 6=k

∑

h∈Bl

c
h
T

−1

k,t
T

l,t
(h(x, y))

+
∑

(r,p)∈θ∈Θ

p∈Tor(σ), σ⊂�
+
r

∑

i�m(r,p)+jm<m�m(r,p)

(i,j)6=(m−1,0)

tc
(r,p)

ij
T

−1

k,t
T

r,t
(π

(r,p)

ij
(x, y))

+
∑

(r,p)∈θ∈Θ

p∈Tor(σ), σ⊂�
−

r

∑

i�m(r,p)+jm<m�m(r,p)

j>0

tc
(r,p)

ij
T

−1

k,t
T

r,t
(π

(r,p)

ij
(x, y)) . (9)

This is a deformation of f
k
(x, y) in P(∆).

Our first requirement about f̂
k
(x, y) is that f̂

k
∈M

k
, where M

k
⊂ P(∆)

is the variety germ introduced in Step 1. Consequently, by (4), this can be
expressed in the form

c
h

= L
k

h
({c

h
′ : h

′
∈ B

r
, (r, k) ∈ Arc(Γ)}) + O(t), h ∈ B

k
, (10)

where L
k

h
are linear functions with constant coefficients in their variables c

h
′.

Step 6. Now, we intend to show how appear singularities of a deformation
pattern in the constructed family of curves {f = 0}. We consider the case
θ ∈ Θ2 and assume that the graph θ has more than one arc. The other cases
can be treated similarly, and even in a simpler manner.

Let (k, p), (l, q) ∈ θ, p ∈ Tor(σ), σ ⊂ ∂∆
k
, q ∈ σ̃, σ̃ ⊂ ∂∆

l
, σ 6= σ̃, and

denote m := (C
k
· Tor(σ))

p
≥ 2. By assumption and the definition of θ, the

polygons ∆
k
, ∆

l
are joined by a well ordered sequence of polygons such that

any two neighboring polygons in the sequence have a common edge, and all
these common edges, among them σ and σ̃, are parallel.

Let ∆1, . . . , ∆s
, s ≥ 1, be the sequence of polygons joining ∆

k
and ∆

l
(see

Figure 1 (a)). Geometrically, this means that the points p and q are joined
in
⋃

N

i=1
Tor(∆

i
) by a sequence of non-singular rational components C

′
1
⊂ C1,

. . . , C ′
s
⊂ C

s
, such that each component C

′
i

appears in C
i

with multiplicity
m. Without loss of generality assume that ν is constant on σ, σ̃ and on all
parallel to them edges of ∆1, . . . , ∆s

. Perform the following coordinate change
(x, y) 7→ (x′′

, y
′′):

• Let M
σ

be an affine automorphism of Z2 which makes σ horizontal
(see Figure 1 (b)). This corresponds to a monomial coordinate change
x = (x′)a(y′)b, y = (x′)c(y′)d in f(x, y). The truncation of the new
polynomial f ′(x′

, y
′) on the edge σ is a polynomial in x

′, multiplied
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-

6

(a)
-

6

(b)
-

6

(c)
m

Π

-

6

(d)
-

6

(e)
-

6

(f)
m

Figure 1: Deformation of multiple components and singular points lying on
Sing(Y0).

by a monomial in x
′
, y

′, and with coefficient, analytically depending
on t. Reducing the above monomial in x′

, y
′ and a common power of

t in the coefficients, we put t = 0 in that truncation and obtain a
complex polynomial P0(x

′), which has a root ξ 6= 0 of multiplicity m,
corresponding to the point p;

• Assuming, without loss of generality, that ν is zero along σ, we perform
the shift x′ = x

′′ + ξ, y
′ = y

′′, and put f
′′(x′′

, y
′′) = f

′(x′
, y

′).

The Newton polygons ∆′′
k
, ∆′′

l
, ∆′′

1
, . . . , ∆′′

s
of the respective polynomials

f
′′
k
(x′′

, y
′′) =

∑

(i,j)∈�′′

k

a
′′
ij
(x′′)i(y′′)j := f

k
(x, y) ,

f
′′
l
(x′′

, y
′′) =

∑

(i,j)∈�′′

l

a
′′
ij
(x′′)i(y′′)j := f

l
(x, y) ,

f
′′
u
(x′′

, y
′′) =

∑

(i,j)∈�′′

u

a
′′
ij
(x′′)i(y′′)j := f

u
(x, y) , u = 1, . . . , s,

will be located as shown in Figure 1 (c), surrounding the trapeze Π with
vertices (0, r

s
−m(l, q)), (0, r0+m(k, p)), (m, r0), (m, r

s
). Denote the ordinates
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of the horizontal edges of ∆′′
1
, . . . , ∆′′

s
by r0 > r1 > . . . > r

s
(see Figure

1 (f)). The function ν induces, via the above coordinate change, linear affine
functions λ′′

k
, λ

′′
l
, . . . , λ

′′
1
, λ

′′
s

on the polygons ∆′′
k
, ∆′′

l
, ∆′′

1
, . . . , ∆′′

s
, respectively,

which together form a convex function ν ′′, non-linear on the union of any two
of the polygons. Due to generality of ν, there is a unique extension of ν

′′ on Π
as a convex piece-wise linear function with linearity domains inside Π being
parallelograms and a translate of the triangle ∆

θ
(see, for example, Figure

1 (d,e)).
The linear map Ψ, which takes any polynomial g(x, y) to g ′′(x′′

, y
′′) along

the above coordinate change, and then projects g ′′(x′′
, y

′′) to the space P(Π0),
where Π0 is obtained from the trapeze Π by removing the non-vertical edges
and the right vertical edge, induces the isomorphisms

Span

({

π
(k,p)

ij

∣

∣

∣

∣

i ·m(k, p) + jm < m ·m(k, p),
(i, j) 6= (m− 1, 0)

}

∪

{

∂f
′′
k

∂x′′

})

' Span
{

(x′′)α(y′′)β

∣

∣

∣
β ≥ r0, m(k, p)α + m(β − r0) < m ·m(k, p)

}

,

Span
{

π
(l,q)

ij

∣

∣

∣
j > 0, i ·m(l, q) + jm < m ·m(l, q)

}

' Span
{

(x′′)α(y′′)β

∣

∣

∣
β < r

s
, m(l, q)α + m(r

s
− β) < m ·m(l, q)

}

,

and, for each u = 1, . . . , s,

Span





⋃

z∈C
′

u

B
u,z



 ' Span
{

(x′′)α(y′′)β

∣

∣

∣
0 ≤ α < m, r

u
≤ β < r

u−1

}

.

The latter isomorphism statement comes from the fact that the monomials
(x′′)α(y′′)β, 0 ≤ α < m, r

u
≤ β < r

u−1, project to a basis of the complex vector
space

⊕

z∈C
′

u
OC2

,z
/I

eg(C
u
, z), whereas

⋃

z∈C
′

u
B

u,z
projects to a basis of the

aforementioned space
⊕

z∈C
′

u
OC2

,z
/I

eg(C
u
, z) by construction (see Step 1).

Put ν̃(i, j) = max{λ′′
k
(i, j), λ′′

1
(i, j), . . . , λ′′

s
(i, j), λ′′

l
(i, j)}. Any coefficient

A
ij
(t), (i, j) ∈ Π0, of f

′′(x′′
, y

′′) starts with an exponent of t, greater than
ν̃(i, j). Furthermore, we have

Ψ(f ′′(x′′
, y

′′)) = t





∑

(i,j)∈Π0

(L1,ij
+ O(t))teν(i,j) + L2 ·

∂f
′′

∂x′′



 ,

where L1,ij
is a linear function with constant coefficients depending on the

parameters










c
k,p

αβ
, where m(k, p)α + mβ < m ·m(k, p), (α, β) 6= (m− 1, 0) ,

c
l,q

αβ
, where m(l, q)α + mβ < m ·m(l, q) ,

c
h
, where h ∈

⋃

z∈C
′

1

B1,z
∪ . . . ∪

⋃

z∈C
′

s
B

s,z
,

(11)
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and






ch
, where h ∈

⋃

(u,k)∈Arc(Γ)

B
u
∪

⋃

(u,l)∈Arc(Γ)

B
u
∪

s
⋃

α=1

⋃

(u,α)∈Arc(Γ)

B
u







, (12)

and L2 is a linear function with constant coefficients depending on the pa-
rameters






















{c
h
, h ∈ B

k
}, {c

h
, h ∈

⋃

(s,k)∈Arc(Γ)
B

s
},

{c
(k,p)

αβ
), m(k, p)α + mβ < m ·m(k, p), (α, β) 6= (m− 1, 0)},

{c
(k,z)

αβ
, z ∈ C

k
∩ Tor(∂∆

k
), z 6= p},

{c
(u,z)

αβ
, z ∈

⋃

(u,k)∈Arc(Γ)
(C

u
∩ Tor(∂∆

u
))}

. (13)

Using the isomorphism induced by Ψ, we conclude that there exist











c
(k,p)

αβ
, m(k, p)α + mβ < m ·m(k, p), (α, β) 6= (m− 1, 0) ,

c
h
, h ∈

⋃

z∈C
′

1

B1,z
∪ . . . ∪

⋃

z∈C
′

s
B

s,z
,

c
(l,q)

αβ
, j > 0, m(l, q)α + mβ < m ·m(l, q) ,

(14)

and an analytic function τ(t), vanishing at zero, such that

Ψ(f ′′(x′′ + tτ(t), y′′) =
∑

(i,j)∈Π0

d
θ

ij
(t)tν

′′
(i,j)(x′′)i(y′′)j

, (15)

where d
θ

ij
are analytic in a neighborhood of zero. Formally, (15) reduces to a

system of equations for the variables (14)











c
(k,p)

ij
= L

(k,p)

ij
+ O(t) ,

i ·m(k, p) + jm < m ·m(k, p), (i, j) 6= (m− 1, 0) ,

c
(l,q)

ij
= L

(l,q)

ij
+ O(t), j > 0, i ·m(l, q) + jm < m ·m(l, q) ,

(16)

c
h

= L
h

+ O(t), h ∈

⋃

z∈C
′

1

B1,z
∪ . . . ∪

⋃

z∈C
′

s

B
s,z

, (17)

where L
(k,p)

ij
, L

h
, L

(l,q)

ij
are linear function with constant coefficients, whose

variables are d
θ

ij
, (i, j) ∈

Pi0, and additionally

• for L
(k,z)

ij
,

{

c
h
, where h ∈

⋃

(s,k)∈Arc(Γ)
B

s
,

c
(k,z)

αβ
, where z ∈ Tor(∆−

k
), (C

k
· Tor(∆−

k
))

z
≥ 2 ,

(18)
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• for L
h
, h ∈ B

u
, 1 ≤ u ≤ s,

cαβ
, where (α, β) ∈ ∆−

u
, (19)

and






































c
h
, where h ∈ B

k
,

c
h
, where h ∈

⋃

(v,k)∈Arc(Γ)
B

v
,

c
(k,p)

αβ
, where m(k, p)α + mβ < m ·m(k, p) ,

(α, β) 6= (m− 1, 0) ,

c
(k,z)

αβ
, where z ∈ C

k
∩ Tor(∂∆

k
), z 6= p ,

c
(s,z)

αβ
, where z ∈

⋃

(v,k)∈Arc(Γ)
(C

v
∩ Tor(∂∆

v
))

(20)

• for L
(l,q)

ij
,

{

bh
(t), where h ∈

⋃

(v,l)∈Arc(Γ)
B

v
,

c
(v,z)

αβ
, where (v, l) ∈ Arc(Γ), z ∈ C

l
∩ Tor(∆−

l
) ,

(21)

and (20).

Our demands on d
θ

ij
(t), (i, j) ∈ Π0 are as follows. Without further confusion

we identify ∆
θ

with the triangle in the subdivision of Π. Let (m, r
u
), (0, r

u
+

m(k, p)), (0, r
u
− m(l, q)) be its vertices. We write d

θ

ij
(t) = d

θ

ij
(0) + e

θ

ij
(t),

where eθ

ij
(0) = 0, and suppose that

• for any parallelogram P in the subdivision of Π, when equating ν
′′
∣

∣

P

= 0
(by subtracting a suitable linear function) and letting t = 0 in f ′′(x′′

, y
′′),

and using (15), we obtain the polynomial

f
P
(x′′

, y
′′) :=

∑

(i,j)∈P∩Π0

d
θ

ij
(0)(x′′)i(y′′)j +

∑

(i,j)∈P\Π0

a
′′
ij
(x′′)i(y′′)j

, (22)

which must be a product of a monomial and binomials;

• when similarly equating ν ′′
∣

∣

�θ
= 0 and letting t = 0 in f

′′(x′′
, y

′′), and

using (15), we obtain the polynomial

∑

(i,j)∈�θ∩Π0

d
θ

ij
(0)(x′′)i(y′′)j + a

′′
mru

(x′′)m(y′′)ru ,

which must be proportional to f
θ
.

All this, clearly, determines d
θ

ij
(0), (i, j) ∈ Π0, uniquely.
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Next we impose conditions on e
θ

ij
(t), (i, j) ∈ Π0. Namely, pick v = 1, . . . , s

and consider the parallelogram P
v

from the subdivision of Π, whose vertices
are

(m, r
v−1), (m, r

v
), (0, r

v−1 + m(k, p)), (0, r
v
+ m(k, p))

if v ≤ u (i.e., the parallelogram lies above the triangle ∆
θ
, Figure 1 (e)), or

(m, r
v−1), (m, r

v
), (0, r

v−1 −m(l, q)), (0, r
v
−m(l, q))

if v > u (i.e., the parallelogram lies below the triangle ∆
θ
, Figure 1 (e)). Let

us again equate ν ′′
∣

∣

Pv
= 0 in f

′′(x′′
, y

′′). Then we obtain

f
′′(x′′

, y
′′) =

∑

(i,j)∈Pv∩Π0

d
θ

ij
(t)(x′′)i(y′′)j +

∑

(i,j)∈Pv\Π0

a
′′
ij
(x′′)i(y′′)j + O(t) . (23)

For t = 0, it specializes to the polynomial f
Pv

defined as in (22), which is a
product of a monomial and binomials, and our demand is that the polynomial
(23) belongs to the variety M eg(f

Pv
) as t 6= 0, the latter variety being defined

in Lemma 2.1(ii). Furthermore, Lemma 2.1(ii) yields that this requirement
can be expressed by a system of equations

e
θ

ij
= L

θ

ij
+ O(t), (i, j) ∈ P

′
v

, (24)

where P
′
v

is obtained from P
v

by removing its upper and right edges, if v ≤ u,
or removing the lower and right edges, if v > u (see Figure 1 (e)), and Lθ

ij
are

linear function with constant coefficients in the variables eθ

αβ
:= d

θ

αβ
− d

θ

αβ
(0)

as (α, β) ranges over P ′
v
, and the variables c

h
, h ∈

⋃

(α,v)∈Arc(Γ)
B

α
.

At last, we equate ν
′′
∣

∣

�θ
= 0 in f

′′(x′′
, y

′′). Then

f
′′(x′′ + tτ(t), y′′) =

∑

(i,j)∈�θ

d
θ

ij
(t)(x′′)i(y′′)j + a

′′
mru

(x′′)m(y′′)ru + O(t)

represents a one-parameter deformation of the pattern (y ′′)ruf
θ
(x′′

, y
′′), which

we want to be S-equisingular with respect to the singularities of C
θ

in C2. As
pointed out in Step 4, this can be expressed by a system of equations

e
θ

ij
= L

θ

ij
+ O(t), (i, j) ∈ B

θ
+ r

u
, (25)

where L
θ

ij
are linear functions with constant coefficients in the variables e

θ

αβ
,

(α, β) ∈ Π0\(Bθ
+ r

u
), and c

h
, h ∈

⋃

(α,u)∈Arc(Γ)
B

α
.

The variables in the systems (24), v = 1, . . . , s, and (25) are naturally
ordered so that, for t = 0, each variable depends linearly only on the preceding
variables; hence, by the implicit function theorem, this bunch of equations can
be resolved with respect to eθ

ij
, (i, i) ∈ Π0. We then plug the solution obtained
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into system (16), (17), noticing that, in this substitution, the variables c
(v,z)

αβ
,

mentioned in (21), enter the terms O(t) for all v, z, α, β.

Step 7. We should like to comment on the deformation of multiple components
corresponding to an element θ ∈ Θ0. In this case, we have a sequence of poly-
gons ∆1, . . . , ∆s

such that the common edges σ
i
= ∆

i
∩∆

i+1, i = 1, . . . , s− 1,
are parallel to each other as well as to an edge σ0 ⊂ ∆1 ∩ ∂∆, and to an
edge σ

s
⊂ ∆

s
∩ ∂∆. The given curves C

i
∈ |L(∆

i
)|, i = 1, . . . , s, have mul-

tiple components C ′
i
⊂ C

i
of the same multiplicity m ≥ 2 and such that

C ′
i
∩ C

′
i+1
∩ Tor(σ

i
) 6= ∅, i = 1, . . . , s− 1. In this case, we take care on de-

formation of the only intersection points of C ′
i

with other components of
C

i
in the torus (C∗)2

⊂ Tor(∆
i
). The condition that these deformations

are in the strata M eg(C
i
, z), z ∈ C

′
i
∩ Sing(Cred

i
), is included in equation (5)

introduced in Step 1. It remains to explain that the non-isolated singular
points indeed turn into collections of nodes. Applying the coordinate change
(x, y) 7→ (x′′

, y
′′) as defined in Step 6, we obtain that the polygons ∆1, . . . , ∆s

turn into polygons ∆′′
1
, . . . , ∆′′

s
with the left vertical sides on the same line

(shown by solid lines in Figure 1 (f)). Then, similarly to the reasoning of
Step 6, we extend the convex function ν ′′ by appending rectangle linearity
domains as depicted by dashes in Figure 1 (f), introduce the variables d

ij
(t)

and, finally, impose the requirement that the truncations of the polynomial
f ′′(x′′

, y
′′)
∣

∣

t=0
(normalized by the vanishing of ν

′′ on the respective rectangle)
on any horizontal edge of any rectangle is square-free. Actually, this freedom
in the choice of d

ij
(t) comes from the fact that we can freely move the compo-

nent C ′
i
of C

i
, 1 ≤ i ≤ s, separating an m-multiple component into m distinct

components.

Step 8. Before we join all the equation obtained in the preceding steps into
one system, we should like to notice that some equations may be dependent,
and hence must be removed from the system, since we finally intent to apply
the implicit function theorem. Namely, the system of equations (16), (17)
obtained in Step 6 is, in fact, included in the system (16), (10). Indeed, in
our setting, (10) takes the form

c
h

= L
α

h

({

c
h
′

∣

∣

∣
h
′
∈ B

v
, (v, α) ∈ Arc(Γ)

})

+ O(t), h ∈ B
β
, β = 1, . . . , s .

(26)
By the implicit function theorem, we can resolve the system (16), (17) with
respect to the variables in the left-hand side, then we substitute the expres-
sions for c

k,p

ij
, c

l,q

ij
into (17). The right-hand sides of the resulting system (17)

depend on the same bunch of variables as in (26), and, by our construction,
the system (26) implies the property that the distinct multiple components
of any of the curves C1, . . . , Cs

do not glue up with each other and with any
other component in a neighborhood of

⋃

s

γ=1
(Sing(Cred

γ
)\Singiso(C

γ
) along the
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deformation defined by f(x, y). In turn, the system (17) simply expresses the
latter property for some of the multiple components of C1, . . . , Cs

. Hence,
the claim follows, and we get rid of all equations (17), including instead the
equations (26) in the final system.

Step 9. We have expressed all the conditions imposed to the required polyno-
mial f(x, y) as systems of equations:

• (10) for all k = 1, . . . , N ,

• (16) for all elements θ ∈ Θ1 ∪Θ2.

The orientation Γ induces an ordering of the variables in the above united
system so that, for t = 0, each variable is expressed only via strongly preceding
variables, and hence the system can be resolved by the implicit function
theorem.

Geometrically, the imposed conditions mean that, for each point z ∈

Singiso(C
k
)∩(C∗)2, k = 1, . . . , N , and for each z ∈ Sing(C

θ
), θ ∈ Θ1 ∪Θ2, the

polynomial f(x, y) induces an S-equisingular one-parametric deformation of
the germ at z. Furthermore, each point p ∈ Sing(C red

k
)\Singiso(C

k
), 1 ≤ k ≤

N , bears dimOC2
,p
/I

eg(C
k
, p) nodes, because the curves C

(t)
⊂ Tor(∆) have

no multiple components (the curve C(t) crosses Tor(∂∆) with multiplicity 1
at each point by the assumptions of Section 2.1).

At last, notice that C(t) has no non-isolated singularities,and, moreover,
no singularities other than listed in the theorem. Indeed, the non-isolated sin-
gularities disappear due to the separation of multiple components as explained
in Steps 6 and 7: this reflects the fact that the truncations of f ′′(x′′

, y
′′)
∣

∣

t=0

(normalized by equating ν
′′ = 0 on the respective parallelograms or rect-

angles) on the non-vertical edges of the parallelograms or rectangles are
square-free polynomials by construction. The other singular points of C (0)

on Sing(Y0) like, for example, a point z ∈ Tor(σ) ∩ C
k
∩ C

l
, σ = ∆

k
∩∆

l
,

with (C
k
· Tor(σ))

z
= 1, bear no singular points of C

(t), t 6= 0, in view of
[15, Lemma 3.2]. 2

2.5 Family of Deformations

The deformation C
(t), t ∈ (C, 0), obtained in Theorem 2.4, is not unique. In

fact, the polynomial f(x, y) describing the deformation depends analytically
not only on t, but also on other parameters, whose number is equal to the
codimension of the germ at C

(t) of the S-equisingular stratum in |L(∆)| as
t 6= 0. It is not difficult to extract these parameters from the proof of Theorem
2.4. Some particular subsets of such parameters are quite easy to describe:

For example, take any set B of the vertices of the polygons ∆1, . . . , ∆N

such that, for each k = 1, . . . , N , either |B ∩ ∆
k
| ≤ 3, or B ∩ ∆

k
⊂ ∆−

k
(Γ).
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Then the theorem provides a family of curves C
(t), which can be defined by

a polynomial

f(x, y) =
∑

(i,j)∈�

(a
ij

+ c
ij
)xi

y
j

t
ν(i,j)

, (27)

where c
ij

= c
ij
(t) are analytic functions vanishing at zero, (i, j) ∈ ∆, and

c
ij
(t) = �B

ij

({

c
kl
(t)
∣

∣ (k, l) ∈ B
}

, t
)

, (i, j) ∈ ∆ ∩ Z2
\B , (28)

with certain analytic functions �B

ij
, (i, j) ∈ ∆ ∩ Z2

\B.

To obtain the required family, it is sufficient to show that the polynomi-
als h ∈

⋃

N

k=1
B

k
and all the polynomials π

(k,z)

ij
, introduced in Step 2 of the

proof of Theorem 2.4, can be chosen so that they do not contain monomials
xα

y
β, (α, β) ∈ B. Indeed, if the latter holds, then the solution to the system

considered in Step 9 of the proof of Theorem 2.4 depends on the coefficients
c
ω
, ω ∈ B, as free parameters.

Pick k = 1, . . . , N . If B ∩∆k
⊂ ∆−

k
(Γ), then by construction, the polyno-

mials h ∈ B
k

and the polynomials π
(k,p)

ij
, j > 0, do not contain the monomials

x
α
y

β, (α, β) ∈ B. Assume that |B ∩ ∆
k
| ≤ 3. Then, by applying a transfor-

mation of type C[x, y] 3 g(x, y) 7→ ag(bx, cy), a, b, c ∈ C∗, we can freely vary
the coefficients of x

α
y

β, (α, β) ∈ B∩∆
k
, in any polynomial g(x, y) with New-

ton polygon ∆
k
. On the other hand, all the strata M

S(C
k
, p), M

eg(C
k
, p),

and M sqh(C
k
, p) which appear in Definition 2.2 are invariant with respect to

the above transformations (close to the identity). Hence (cf. the proof of [15,

Lemmas 3.4 and 5.5]) the polynomials h ∈ B
k

and all π
(k,p)

ij
can be chosen

free of the monomials x
α
y

β, (α, β) ∈ B.

3 Patchworking of Curves on Arbitrary Sur-

faces

In this section, we consider patchworking of reduced curves on arbitrary al-
gebraic surfaces.

3.1 Initial Data for Patchworking

Let us be given

• a flat family of projective surfaces Y → (C, 0), all surfaces being irre-
ducible except for the reduced reducible central fiber Y0 = ∪N

i=1
Y

i

0
;

• a line bundle L on Y ;
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• a reduced curve X0 ⊂ Y0, belonging to the linear system |L0| (where
L0 = L

∣

∣

Y0

) which contains no component of the intersection lines

Y i

0
∩ Y

j

0
, i 6= j.

An additional assumption on the family Y → (C, 0) is that the surfaces
Y

t
, t 6= 0, and Y

i

0
, i = 1, . . . , N , may have only isolated singularities, the

intersections Y i

0
∩ Y

j

0
∩ Y

k

0
, i < j < k, are finite, and that, for any line

E
ij

= (Y i

0
∩ Y

j

0
)
red

, i 6= j, and any point p ∈ E
ij
\Sing(E

ij
), in a neighbor-

hood of p the family Y → (C, 0) is isomorphic to (a neighborhood of) the
family

Spec C[x, y, z, t]/(xy − t
a)→ Spec C[t] (29)

with some positive integer a and Y i

0
= {x = t = 0}, Y

j

0
= {y = t = 0}.

Furthermore, we suppose that X0∩Sing(
⋃

i,j
E

ij
) = ∅, and, for any point

p ∈ X0 ∩ E
ij
, in suitable local coordinates x, y in a neighborhood of p in Y

i

0
,

the line E
ij

is represented by y = 0, and the curve X
i

0
is represented by

f
i

p
(x, y) :=

∑

km
′+lm≥mm

′

α
kl
x

k

y
l = 0 ,

where m
′
, m are positive integers (m is the intersection number (E

ij
·X

i

0
)
p
),

and the quasihomogeneous polynomial

ϕ
i

p
(x, y) =

∑

km
′+lm≥mm

′

α
kl
x

k

y
l

is non-degenerate, i.e., has no critical points outside the origin.
At last, for any point p ∈ X0 ∩ E

ij
, we pick a deformation pattern, a

curve C
p

in the respective toric surface Tor(∆
p
), where C

p
and ∆

p
are defined

precisely as the respective objects C
θ

and ∆
θ

in Section 2.1.

Remark 3.1. In principle, one can assume that the curve X0 is non-reduced,
but the requirements to multiple components do not look natural as they
appear in the toric case. Furthermore, we shall not need such a generalization
in the next application.

3.2 Transversality

As in Section 2.2, we work with an equivalence S of isolated planar
curve singular points and define the germs MS(Xk

0
, p) at X

k

0
of the S-

equisingular strata in the linear system |Lk

0
|, where Lk

0
= L

∣

∣

Y
k
0

, for the points

p ∈ Sing(Xk

0
) \ Sing(Y0). We also introduce the linear subsystems M

sqh

0
(Xk

0
, p)

and M sqh(Xk

0
, p) in |Lk

0
| for all the points p ∈ X

k

0
∩

⋃

i6=k
E

ik
as was done in

Section 2.2.
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We say that M
sqh

0
(Xk

0
, p) (or M

sqh(Xk

0
, p)) is of expected dimension, if

the codimension of M
sqh

0
(Xk

0
, p) (resp. of M

sqh(Xk

0
, p)) in |Lk

0
| is equal to

dim C{x, y}/I
sqh

0
(Xk

0
, p) (resp. to dim C{x, y}/I

sqh

0
(Xk

0
, p)).

Definition 3.2. Let (Y k

0
)− be a connected (or empty) union of some lines

E
ik

, i 6= k. Denote by (Y k

0
)+ the union of the remaining lines E

ik
, i 6= k. The

triad (Y k

0
, (Y k

0
)−, X

k

0
) is called S-transversal, if all the germs











MS(Xk

0
, p), p ∈ Sing(Xk

0
) \ Sing(Y0) ,

M
sqh

0
(Xk

0
, p), p ∈ X

k

0
∩ (Y k

0
)− ,

M sqh(Xk

0
, p), p ∈ X

k

0
∩ (Y k

0
)+

are smooth of expected dimension and intersect transversally in |Lk

0
|.

3.3 Patchworking Theorem

Denote by G the adjacency graph of the components Y
1

0
, . . . , Y

N

0
of Y0, and

by G the set of orientations of G, which have no oriented cycles. For Γ ∈ G,
denote by (Y k

0
)−(Γ) the union of those lines E

ik
, i 6= k, which correspond to

arcs of G Γ-oriented inside Y k

0
. We assume that (Y k

0
)−(Γ) is connected for

any k = 1, . . . , N .

Theorem 3.3. In the above notations, and under the assumptions of Sec-

tion 3.1, suppose that all the triples
(

Y k

0
, (Y k

0
)−(Γ), Xk

0

)

, k = 1, . . . , N , are S-

transversal, and that all the deformations patterns C
p
, p ∈ X0 ∩ Sing(Y0) are

S-transversal in the sense of Definition 2.3. Then there exists a flat deforma-

tion X
t
, t ∈ (C, 0), inscribed in the deformation Y

t
, t ∈ (C, 0), such that there

is an S-equivalent 1-to-1 correspondence between Sing(C (t)) and the disjoint

union of the sets Sing(Xk

0
) \ Sing(Y0), k = 1, . . . , N , and the sets Sing(C

p
),

p ∈ X0 ∩ Sing(Y0).

Again, we point out that the assumptions of the above theorem are weaker
than those in the patchworking theorems of [18]. The difference is that there
we replace the ideals I

sqh

0
(Xk

0
, p), p ∈ X

k

0
∩ (Y k

0
)+(Γ), by the bigger ideals

Isqh(Xk

0
, p) for all k = 1, . . . , N .

Proof of Theorem 3.3. Our reasoning is a combination of the argument in the
proof of Theorem 2.4 and that in the proof of [18, Theorems 2.8 and 3.1], so
we shall omit details and only indicate some crucial points.

Namely, first note that the S-transversality of a triple (Y k

0
, (Y k

0
)−(Γ), Xk

0
)

can be expressed as (see [18, formula (2)])

H
1



Y
k

0
,L

k

0
⊗ J

Zk
⊗O

Y
k
0



−

⋃

Eik⊂(Y k
0

)−(Γ)

E
ik







 = 0 ,
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where J
Zk

is the ideal sheaf of the zerodimensional scheme Z
k
⊂ Y

k

0
, concen-

trated at Sing(Xk

0
) ∪ (Xk

0
∩ Sing(Y0)) and defined by the ideals

(i) I
S(Xk

0
, p), p ∈ Sing(Xk

0
)\Sing(Y0),

(ii) I
sqh

0
(Xk

0
, p), p ∈ X

k

0
∩ (Y k

0
)−(Γ),

(iii) I
sqh(Xk

0
, p), p ∈ X

k

0
∩ (Y k

0
)+(Γ).

Since Γ defines a partial order on the set of components Y
1

0
, . . . , Y

N

0
, us-

ing induction and standard cohomology arguments, we can show that, for
the ideal sheaf J of a certain zerodimensional scheme in Y0, we have
H1(Y0,L0 ⊗ J ) = 0, and hence H

1(Y0,L0) = 0. This, in particular, implies
that dim H0(Y

t
,L

t
) = const, t ∈ (C, 0), which means that all the sections of

L0 are extendable up to sections of L, and furthermore that

H
0(Y0,L0) '

N
⊕

k=1

H
0



Y
k

0
,L

k

0
⊗O

Y
k
0



−

⋃

Eik⊂(Y k
0

)−(Γ)

E
ik









(cf. with the toric case treated in Section 2).

The rest of the proof goes along the lines of the proof of Theorem 2.4.
For example, a local deformation of a singular point p ∈ E

ij
∩X0 we represent

by the following toric model. The germ (Y, p) we replace by a germ of the

toric variety (Tor(˜∆), z), where ˜∆ is the overgraph of a convex piece-wise
linear function ν defined on some convex lattice polygon ∆ with two linearity
domains ∆′

, ∆′′ and such that |n1×n2| = a, n1, n2 being the primitive integral
gradients of ν, and a being the number from (29), and finally z ∈ Tor(σ),
σ = ∆′

∩ ∆′′. The curve germs (Y i

0
, p, (Y j

0
, p) are replaced by suitable curve

germs (C ′
, z) ⊂ Tor(∆′), (C ′′

, z) ⊂ Tor(∆′′). Then one follows the argument
of Step 6 of the proof of Theorem 2.4, in which the trapeze Π coincides with
the triangle ∆

p
.

4 Nodal Deformations of Non-Planar Isolated

Curve Singularities

Consider a family of surfaces ξ : Y → (C, 0) defined by (29). Let a curve
X0 ⊂ Y0 have an isolated singularity at the origin. Denote by U a regular
neighborhood of the germ (Y0, X0, 0) in C4. We ask the question:

Given a flat deformation X
t
, t ∈ (C, 0), of the germ (X0, 0) such

that X
t
⊂ Y

t
= ξ

−1(t), t 6= 0. How many nodes may X
t
∩ U have ?
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In the case of a planar curve singularity, the sharp upper bound is given by
the δ-invariant.

Denote by Y ′
0
, Y

′′
0

the components of Y0, by L their intersection line. Re-
spectively put X ′

0
= X0 ∩ Y

′
0
, X

′′
0

= X0 ∩ Y
′′
0
. Let m = (X ′

0
· L)0 = (X ′′

0
· L)0.

By [15, Lemma 3.2], the number of nodes in question satisfies

δ ≤ δ(X ′
0
, 0) + δ(X ′′

0
, 0) + m−max{r(X ′

0
), r(X ′′

0
)} , (30)

where δ(∗) stands for the δ-invariant, and r(∗) denotes the number of local
branches at the origin. This bound, however is not sharp in general.

We give a sharp upper bound in the following statement. To formulate it,
we introduce one more parameter. Let P

i
, i = 1, . . . , r(X ′

0
), be the set of local

branches of X ′
0

at 0, and Q
i
, i = 1, . . . , r(X ′′

0
), the set of local branches of X

′′
0

at 0. Denote by n the maximal number of subsets in the disjoint splitting

{1, . . . , r(X ′
0
)} =

n
⋃

s=1

B
′
s
, {1, . . . , r(X ′′

0
)} =

n
⋃

s=1

B
′′
s

,

such that
∑

i∈B
′

s

(P
i
· L)0 =

∑

j∈B
′′

s

(Q
j
· L)0, s = 1, . . . , n . (31)

Theorem 4.1. Under the above assumptions, for any flat family of curves

X
t
, t ∈ (C, 0), inscribed into the family Y

t
, t ∈ (C, 0), the number of nodes of

X
t
∩ U does not exceed

δ(X0, 0) := δ(X ′
0
, 0) + δ(X ′′

0
, 0) + m− r(X ′

0
)− r(X ′′

0
) + n . (32)

Furthermore, there exists a deformation X
t
⊂ Y

t
, t ∈ (C, 0), such that the

number of nodes of X
t
∩ U is equal to δ(X0, 0).

Example 4.2. We illustrate the difference between (30) and (32) by the fol-
lowing simple example. Assume that X

′
0

has two non-singular local branches
at 0, one transversal to L, and the other intersecting L with multiplicity
3; in turn, let X ′′

0
have a tacnode at 0 with tangent L, that is, have two

non-singular local branches which both are quadratically tangent to L. The
bound (30) reads as δ ≤ 1 + 2 + 4− 2 = 5, whereas the bound (32) says that
δ ≤ 1 + 2 + 4− 2− 2 + 1 = 4. Here, n = 1 since the only possible relation of
type (31) involves all the local branches: 1 + 3 = 2 + 2.

Proof. (1) We start with the upper bound.
The branches P

i
, Q

j
are topological discs, and the loops ∂P

i
, ∂Q

j
are

linked (positively, when fixing the standard orientations) in Y with Y ′′
0

and
Y ′

0
, respectively (see the proof of [15, Lemma 3.2]). Since Y

t
, t 6= 0 are disjoint
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to Y0, in any deformation X
t
, t ∈ (C, 0), the discs P

i
glue up with the discs

Q
j

by some handles and vice versa.
Assume that, in a given deformation of X0, the branches P

i
, i ∈ S

′
⊂

{1, . . . , r(X ′
0
)} glue up precisely with Q

j
, j ∈ S

′′
⊂ {1, . . . , r(X ′′

0
)} into a con-

nected immersed surface Σ. This means, in particular, that the subgerm
(

⋃

i∈S
′ Pi
∪

⋃

j∈S
′′ Qj

, 0
)

deforms in a flat family. Hence,

∑

i∈S
′

(P
i
· L)0 =

∑

j∈S
′′

(Q
j
· L)0, s = 1, . . . , n

(see for example, part (3) of the proof of [9, Theorem 8.3]). Thus, the nor-
malization Σ̌ satisfies χ(Σ̌) ≤ 2−#S

′
−#S

′′, which then yields

χ(X̌t
) ≤ 2n− r(X ′

0
)− r(X ′′

0
) . (33)

Modelling the deformation X
t

by a patchworking of two curves of a large
degree as was done in the proof of [15, Lemma 3.2], we easily obtain that the
number of nodes of X t

∩ U is equal to

δ = δ(X ′
0
, 0) + δ(X ′′

0
, 0) + m +

χ(X̌t
)− r(X ′

0
)− r(X ′′

0
)

2
(33)

≤ δ(X ′
0
, 0) + δ(X ′′

0
, 0) + m− r(X ′

0
)− r(X ′′

0
) + n .

(2) For a given germ (X0, 0), we shall construct a deformation X
t
such that

χ(X̌
t
) = 2− r(X ′

0
)− r(X ′′

0
) . (34)

This is sufficient for the sharpness of (32), since in general, we can split a given
germ (X0, 0) into n subgerms following the splitting (31), and then deform
each subgerm separately, keeping (34). This condition, in turn, is equivalent
to the required sharpness as explained in the preceding part of the proof.

In the construction of a deformation satisfying (34), we use Theorem 3.3.
Without loss of generality, assume that X ′

0
, X

′′
0

are plane algebraic curves of
a sufficiently large degree d having only one singular point, the surface Y0 is
split into two toric surfaces Tor(∆′), Tor(∆′′), where

∆′ = conv{(0, 0), (0, d), (d, 0)}, ∆′′ = conv{(0, 0), (0,−d), (d, 0)}

and Y
′
0
∩ Y

′′
0

= Tor(σ), σ = ∆′
∩∆′′ (see Figure 2), and that the family Y

t
is

modelled by the family Tor(˜∆)→ C, where

˜∆ = {(α, β, γ) ∈ R3 : γ ≥ ν(α, β), (α, β) ∈ ∆ := ∆′
∪∆′′

} ,

ν : ∆→ R, ν
∣

∣

�′
= 0, ν

∣

∣

�′′
(α, β) = −aβ .
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6

-

−d

d

d

τ
′

τ
′′

Figure 2: Deformations of non-planar curve singularities

Next we refine this family of surfaces and the curves X
′
0
, X

′′
0

in order to satisfy
the hypotheses of Theorem 3.3.

Consider the Newton diagrams of the singular points of X
′
0
, X

′′
0

located
at the origin, corresponding to the common vertex (0, 0) of ∆′

, ∆′′. The curves
X ′

0
, X

′′
0

lift to the toric surfaces Tor(τ ′), Tor(τ ′′), where τ
′
, τ

′′ are the parts of
∆′

, ∆′′, respectively lying right to the Newton diagrams (see Figure 2). Now we
restrict the function ν to τ ′

∪ τ
′′ and then extend it back to ∆′

∪∆′′
\(τ ′
∪ τ

′′)
as a convex piece-wise linear function ν1 so that the linearity domains of
the extension will be the triangles obtained by cutting along the segments,
joining the origin with the vertices of the Newton diagrams (shown by dashes

in Figure 2). We then pass to the new surface family Tor(˜∆1) → C, where
˜∆1 is the overgraph of ν1, and respectively we define a curve in the central
fibre, taking X ′

0
, X

′′
0
, and the following curves C1, . . . , Cs

in the toric surfaces
Tor(T1), . . . , Tor(T

s
), where T1, . . . , Ts

are all the triangles of the subdivision
with vertex at the origin:

• the curve C
i
∈ |L(T

i
)| is nodal, rational, and smooth along Tor(∂T

i
),

i = 1, . . . , s;

• if σ
i
= T

i
∩ T

i+1 is a common edge, then C
i
∩Tor(σ

i
) = C

i+1∩Tor(C
i+1)

is one point, 1 ≤ i < s;

• if σ′
i
= T

i
∩ τ

′ is a common edge, then C
i
∩ Tor(σ′

i
) = X

′
0
∩ Tor(σ′

i
)

scheme-theoretically, that is, (C
i
· Tor(σ′

i
))

p
= (X ′

0
· Tor(σ′

i
))

p
for any

common point p ∈ Tor(σ′
i
), and the same holds for the edges σ

′′
i

=
T

i
∩ τ

′′.
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The existence of such curves is an easy exercise (cf. [15, Lemma 3.5]).

Assume that the singularities of X0 on Tor(σ), σ = T
i
∩ (τ ′

∪ τ
′′),

i = 1, . . . , s, are semiquasihomogeneous in the sense of Section 3.1. Then we
choose deformation patterns for each point p ∈ X0 ∩ Sing(Y0) presented by a
rational nodal curve, and orient the adjacency graph G from τ

′
, τ

′′ to T
i
’s, and

between T
i
’s, say, clockwise. The transversality of the triads (τ ′

, (τ ′)−(Γ), X ′
0
)

and (τ ′′
, (τ ′′)−(Γ), X ′′

0
) follows from the free choice of d to be arbitrarily large,

the transversality of nodal deformation patterns follows from [15, Lemma
5.5 (i)], since the nodes do not contribute to the left-hand sides of the corre-
sponding inequalities, whereas the right-hand sides are always positive. Sim-
ilarly all the triads (T

i
, T

−
i

(Γ), C
i
) are transversal by [15, Lemma 5.4 (ii)],

where one simply has to verify that T
−
i
6= ∂T

i
. Hence Theorems 2.4 and 3.3

apply, and we obtain a deformation X
t
∩ U glued out of the deformation

patterns and the curves C1, . . . , Cs
. One can easily check that (34) holds.

If there are non-semiquasihomogeneous singularities of X0 on Tor(σ),
σ = T

i
∩ (τ ′

∪ τ
′′), i = 1, . . . , s, then we apply the procedure, described

above (which, in fact, is a partial embedded resolution) to any such singular
point. Since the Milnor numbers of the singularities of X0 strictly decrease
each time, after finitely many resolutions we come to the data satisfying
the conditions of Theorem 3.3. Namely, we orient the adjacency graph G of
the respective blow ups (Tor(τ ′))∗, (Tor(τ ′′))∗ to the adjacent components
of Y0. We orient the components which appear at some stage clockwise like
the triangles T1, . . . , Ts

above. At last, we always orient G from the newly
appeared components of Y0 to the components, built on the preceding steps.
Again, the transversality of the triads

(

(Tor(τ ′))∗, ((Tor(τ ′))∗)−(Γ), (X ′
0
)∗
)

and
(

(Tor(τ ′′))∗, ((Tor(τ ′′))∗)−(Γ), (X ′′
0
)∗
)

is provided by a sufficiently large
d. The transversality of nodal deformation patterns and of the triads like
(T

i
, T

−
i

(Γ), C
i
) has been explained above. Thus, Theorem 3.3 applies, and we

obtain a nodal deformation X
t
. We leave it to the reader to verify the equality

(34).
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Adjunction Conditions for One-Forms

on Surfaces in Projective Three-Space

Joseph H.M. Steenbrink

Abstract

We study the relation between a certain graded part of the Jacobian
ring of a projective hypersurface and a certain graded quotient for the
Hodge filtration of its primitive cohomology, in the case that the hy-
persurface has at most isolated singularities. We distinguish a class of
singularities for which this relation is best possible. The only interest-
ing examples occur in the surface case.

Introduction

Let X ⊂ P = Pn+1(C) be a smooth hypersurface given by a homogeneous
polynomial F of degree d. We let

S = C[X0, . . . , Xn+1] , S
k

= {G ∈ S | G homogeneous of degree k}

J (F ) = ideal in S generated by ∂0F, . . . , ∂n+1F , R = S/J (F ) .

Then, by Griffiths [10], we have isomorphisms

R
d(p+1)−n−2

∼=
−→ H

n−p,p

0
(X)

where H0 denotes primitive cohomology.
We intend to investigate the relation between R

d(p+1)−n−2 and the co-
homology of X in the case where X has isolated singularities. More pre-
cisely we investigate for which singularities there is a direct relation between
Grn−p

F
H

n(X,C) and R
d(p+1)−n−2.

It appears thatR
d(p+1)−n−2 is closely related with the cohomology groups

of the sheaf ωn−p

X
of residues of logarithmic n− p+ 1-forms on Pn+1, whereas

Grn−p

F
H

n(X,C) is related to the (n − p)-th graded piece of the filtered de

1991 Mathematics Subject Classification. 14B05, 14C30, 32C35

Key words. Adjunction, differentials
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Rham complex Ω̃•
X

of X. So our question boils down to a comparison of ωn−p

X

(the sheaf of Barlet forms) and Grn−p

F
Ω̃•

X
.

The case p = 0 is classical. The n-th graded part of the filtered de
Rham complex of X is the sheaf of meromorphic n-forms on X which lift
holomorphically to any resolution. For each isolated singular point x of X
one has an ideal I ⊂ O

X,x
with the property that the residue along X of a

rational n+ 1-form

ω =
AΩ

F

on Pn+1 with a first order pole along X extends holomorphically to any res-
olution if and only if A

x
∈ I for each x. These conditions are called the

adjunction conditions and rational singularities are characterized by the fact
that they do not impose adjunction conditions, i.e. I = O

X,x
.

In this paper we study the case p = 1. It will become clear that the
main case of interest is the surface case. We come to a satisfactory picture in
the case that X is a surface with only a certain class of singularities, which
includes the rational double points and cusps. We also deal with the case
of surfaces in weighted projective spaces. We will give examples which show
that the analogous class of singularities in dimensions different from two is
probably empty.

A different approach to this problem occurs in [7].

1 Differentials on Spaces with Quotient Sin-

gularities

We recall some facts concerning sheaves of holomorphic differentials on sin-
gular spaces.

Recall that a V-manifold is a complex analytic space which is locally
isomorphic to the quotient of a complex ball by a finite group of biholomorphic
transformations. Local models for n-dimensional V-manifolds are of the form
Bn

/G where Bn is the n-dimensional open unit ball and G is a small finite
subgroup of U(n,C) i.e. no element of G has 1 as an eigenvalue of multiplicity
n− 1.

For a V-manifold X, one defines sheaves Ω̃p

X
, p ≥ 0, on X as follows.

Let Σ be the singular locus of X. Because a V-manifold is normal, it has
codimension at least two in X. Let j : X \Σ→ X denote the inclusion map,
and put

Ω̃p

X
:= j∗Ω

p

X\Σ
. (1)

Theorem 1.1. 1. If X is a V-manifold and π : X̃ → X a resolution of

singularities, then Ω̃p

X
' π∗Ω

p

X̃

.
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2. If X = Y/G with Y a complex manifold and G a finite group of biholo-

morphic transformations of Y , then Ω̃p

X
' (ρ∗Ω

p

Y
)G

.

See [17, Sect. 1]. Moreover, we have

Theorem 1.2. For any V-manifold X the complex Ω̃•
X

is a resolution of the

constant sheaf C
X

and if moreover X is compact algebraic, the Hodge spectral

sequence

E
pq

1
= H

q(X, Ω̃p

X
) =⇒ H

p+q(X,C) (2)

degenerates at E1; this gives the Hodge filtration on the cohomology of X.

For spaces with arbitrary singularities the properties of these sheaves of differ-
entials cannot all be preserved. Depending on the property one prefers there
is a different generalisation of the above complex.

2 The Filtered de Rham Complex

First let us focus on the Hodge-theoretic property. A filtered complex (Ω̃•
X
, F )

which resolves the constant sheaf C
X

and such that the Hodge spectral se-
quence (2) degenerates at E1 has been constructed by Du Bois [6]. In the
general case however the filtration F is no longer cutting off of the complex
such that the graded complex Ω̃p

X
:= Grp

F
Ω̃•[−p] would be a single sheaf

placed in degree p, but Ω̃p

X
is actually a complex with cohomology sheaves

which may be non-zero on the whole range 0 ≤ j ≤ n − p. This filtered
complex (Ω̃•

X
, F ) is called the filtered de Rham complex of X.

Let X ′ denote the weak normalization of X. It is a complex variety over
X which is homeomorphic to X, and sections of O

X
′ over an open set of X

consist of those continuous functions whose restriction to the regular locus of
X are holomorphic.

Suppose that X has isolated singularities only and that π : Y → X is a
good resolution of singularities. This means that the inverse image π−1(Σ) =:
E, where Σ is the singular locus of X, is a divisor with normal crossings on
Y . Then the cohomology sheaves of the filtered de Rham complex of X can
be described as follows:

• H0(Ω̃0

X
) = O

X
′ ;

• H
q(Ω̃p

X
) = R

q
π∗Ω

p

Y
(logE)(−E) when (p, q) 6= (0, 0).

Here Ωp

Y
(logE)(−E) is the kernel of the natural map Ωp

Y
→ Ωp

E
/torsion, or

alternatively, the twist of the sheaf Ωp

Y
(logE) of logarithmic p-forms with

the ideal sheaf O
Y
(−E) of E. For q > 0 the sheaf Rq

π∗Ω
p

Y
(logE)(−E) has

support on Σ and its stalk at a point x ∈ Σ has finite length bp,q. The numbers
bp,q are the Du Bois invariants of the isolated singularity X, x). See [18].



304. J.H.M. Steenbrink

3 Barlet Differentials

We refer to [11] and [1] for details for this section. If X is a possibly singular
hypersurface in a complex manifold P of dimension n+1, one obtains a natural
notion of holomorphic q-forms by considering residues of meromorphic (q+1)-
forms on P with logarithmic poles alongX. These forms are the sections of the
sheaf ωq

X
first considered by Barlet; for q = n it coincides with Grothendieck

dualizing sheaf. See [8, Sect. 2,3] for a discussion of the differences between
Ω̃n

X
and ω

n

X
.

Let P be compact and let L be a line bundle on P . We consider a hyper-
surface X = V (F ) ⊂ P with at most isolated singularities, given as the zero
set of a global section F of L. Let Ωk(`X) denote the sheaf of germs of mero-
morphic k-forms on P with poles of order at most k along X. We have inclu-
sions Ωk(`X) ⊂ Ωk((`+ 1)X) and differentials d : Ωk(`X)→ Ωk+1((`+ 1)X).
We define

Ωk(logX) = ker
(

d : Ωk(X)→ Ωk+1(2X)/Ωk+1(X)
)

.

If X is smooth then the map d : Ωn(X)→ Ωn+1(2X)/Ωn+1(X) is surjective;
if X has isolated singularities, then the cokernel of this map is a skyscraper
sheaf supported at the singular points of X. Its stalk at x ∈ X is canonically
isomorphic to Ωn+1

X
⊗ L

2 which in turn is non-canonically isomorphic to the
quotient of O

X,x
by the ideal generated by a local equation f of X and

the partial derivatives of f . This stalk has finite length τ(X, x), the Tjurina

number of (X, x). Then

χ(Ωn+1

X
⊗ L

2) = τ :=
∑

x∈X

τ(X, x)

where χ stands for the Euler-Poincaré characteristic of sheaves.

We have the resolution

0→ Ωn(logX)→ Ωn(X)
d

→ Ωn+1(2X)/Ωn+1(X)→ Ωn+1

X
⊗ L

2
→ 0

Consider the sheaf ωn−1

X
on X defined by ωn−1

X
:= Ωn(logX)/Ωn, and define

c(L) := χ(Ωn

⊗ L)− χ(Ωn)− χ(Ωn+1
⊗ L

2) + χ(Ωn+1
⊗ L).

Theorem 3.1. χ(ωn−1

X
) = τ + c(L).

This follows immediately from the exact sequences above.
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4 Smoothing: the Specialization Sequence

We keep the notations of the previous section. Moreover we suppose that P
is a Kähler manifold. Let G be a global section of L which does not vanish
at the singularities of X. Then there exists ε > 0 such that for t ∈ C with
0 < |t| < ε the hypersurface X

t
given by F + tG = 0 is smooth. We have the

exact sequence

0→ H
1(X, Ω̃n−1

X
)→ Grn−1

F
H

n(ψC)→ Grn−1

F
H

n(φC)→ H
2(X, Ω̃n−1

X
)→ 0

(3)
obtained by taking Grn−1

F
from the specialisation sequence of this smoothing

(cf. [17, Sect. 3]). Note that it implies the following analogue to Theorem 3.1:

Theorem 4.1.

χ(Ω̃n−1

X
) = s

n−1 + c(L)

where the invariant s
n−1 =

∑

x∈X
s

n−1(X, x) is a sum of local contributions

from each singularity: s
n−1(X, x) = dim Grn−1

F
H

n(φC)
x
.

Corollary 4.2. Suppose that X ⊂ P is a hypersurface with isolated singu-

larities such that Grn−1

F
Ω̃•

X
[n− 1] ' ω

n−1

X
. Then s

n−1 = τ .

In the next section we will prove the converse of this corollary also holds.

Singularity Spectrum

For an isolated hypersurface singularity f : (Cn+1
, 0) → (C, 0) we define its

Milnor module

Ω
f

:= Ωn+1
/df ∧ Ωn

.

It carries a decreasing filtration V • indexed by rational numbers a. The sin-
gularity spectrum is defined in terms of the V-filtration on Ω

f
as follows: for

b ∈ Q let d(b) := dimC Grb

V
Ω

f
. We put

Sp(f) :=
∑

b∈Q

d(b)(b) ∈ Z[Q]

where the latter is the integral group ring of the additive group of the rational
numbers. It is called the singularity spectrum of f .

The Hodge numbers s
k

of the Milnor fibre of f are expressed in terms of
the singularity spectrum of f by the formula

s
k

=
∑

n−k−1<b≤n−k

d(b).

See [16] for details.
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5 Local Comparison

In this section we will derive a direct relation between the Barlet and Du Bois
differentials for a complete variety X with isolated singularities.

Let π : Y → X be a good resolution: if Σ is the set of singular points
of X, then π−1Σ = E is a divisor with normal crossings on Y with smooth
irreducible components. In this case the graded quotients of the filtered de
Rham complex of X are given by

Ω̃p

X
= Rπ∗Ω

p

Y
(logE)(−E)

for p ≥ 1 and Ω̃0

X
is the single complex associated to the sequence Rπ∗OY

→

Rπ∗OE
→ CΣ. By [1] we have ω

q

X
' Hom(Ωn−q

X
, ω

n

X
), and ω

n

X
= ω

X
is the

dualizing sheaf.
As we are interested in the case p = n − 1 the first case to consider

is where X is a curve and n = 1. Then Ω̃0

X
= O

X
′ where X

′ is the weak

normalization of X. Let us compare this with the sheaf ω0

X
= Hom(Ω1

X
, ω

X
).

This question was first considered in the plane curve case by Kyoji Saito
[15]. He proved that in this case the sheaf Ω1(logX) is locally free.

Lemma 5.1. Let X be a plane curve. Then ω
0

X
is torsion free of rank one.

There is a natural injection Õ
X
→ ω

0

X
, the quotient ω0

X
/O

X
is concentrated

in the singular locus of X and its stalk at x ∈ X has length τ(X, x). Suppose

X = V (f) ⊂ (C2
, 0) is a reduced quasi-homogeneous plane curve singularity:

w
x
xf

x
+ w

y
yf

y
= f . Then the forms df

f
and

wyydx−wxxdy

f
form a local basis of

Ω1(logX). If f is not quasi-homogeneous, then df

f
∈ (x, y)Ω1(logX).

Proof. On the regular locus ofX we have an isomorphism between ω0

X
andO

X

by the residue map. Let us check that it extends to the desired injection. This,
and the fact that ω0

X
is torsion free, can be checked locally near every singular

point. So consider the case of a reduced plane curve singularity (X, 0) ⊂
(C2

, 0) given by a squarefree function germ f ∈ C{x, y}. We have C{x, y}dx⊕

C{x, y}dy ⊂ Ω1(logX)0 ⊂ C{x, y}dx/f ⊕ C{x, y}dy/f so writing O = O
X,0

we have ω0

X,0
⊂ Odx/f ⊕ Ody/f , so it is a subsheaf of a locally free sheaf.

Hence ω0

X
is torsion free, and its rank is the same as the rank of its restriction

to the regular locus, which equals one.
The element a dx/f+b dy/f with a, b ∈ O belongs to ω0

X,0
iff aη−bξ = 0

where ξ, η are the images of f
x
, f

y
in O respectively. This equation has the

obvious solution a = ξ, b = η which corresponds to the germ df/f and hence
to 1 ∈ O. The injectionO ↪→ ω

0

X
is therefore given by c 7→ cξ dx/f + cη dy/f .

To compute the length of the stalk of ω0

X
/O

X
at a singular point of X

we use a global argument, even if the question is local. To this end, suppose
that x ∈ X is the unique singular point of a plane projective curve of de-
gree d. Then the length of ω0

X
/O

X
at x is the same as the Euler Poincaré
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characteristic χ(ω0

X
/O

X
) = χ(ω0

X
)− χ(O

X
). Recall that χ(ω0

X
) = τ + 1− c

d

whereas χ(O
X

) = 1− c
d
. Hence χ(ω0

X
/O

X
) = τ .

To show that ω0

X
contains Õ

X
observe that for any ω ∈ Ω1

X
and a ∈ Õ

X
,

the product aω lies in Ω
X̃

so has no residues; hence it belongs to ω
X

, i.e.
a ∈ Hom(Ω1

X
, ω

X
).

The remaining statements are left to the reader. See also [15, Proof of
Theorem 2.11].

Example 5.2. Let X be a projective plane curve with only ordinary dou-
ble points. Then ω

0

X
' Õ

X
. In particular H0(X,O

X
) → H

0(X,ω0

X
) is an

isomorphism if and only if X is irreducible.

Recall that X ′ denotes the weak normalization of the curve X.

Theorem 5.3. Suppose that X is a plane curve such that O
X

′ = ω
0

X
. Then

X is smooth.

Proof. If O
X

′ = ω
0

X
then O

X
′/O

X
and ω0

X
/O

X
have stalks of the same lengths

at all singular points. Hence for such a singularity one has the equality δ −

r + 1 = τ . By [5, Lemma 6.1.2 and Cor. 6.1.4] τ ≥ δ +m− r where m is the
multiplicity. Hence, m = 1 so X has no singular point.

Here is another argument, based on the spectrum. Let Qf = Ω2
/df ∧ Ω1

with its spectral V -filtration. We have fQf
⊂ V

>0
Q

f so

τ = dimQ
f

/fQ
f

≥ dimQ
f

/V
>0 = δ

with equality iff r = 1 and fQ
f = V

>1. So X is an irreducible plane curve
singularity, and multiplication by f gives an isomorphism Qf

/V
>0
→ V

>0. If
α1, . . . , αδ

are the positive spectral numbers of f in increasing order, then the
spectrum of f is −α

δ
, . . . ,−α1, α1, . . . , αδ

. We find that α
j
+ α

δ−j+1 ≥ 1 for
all j. This implies that the surface singularity with equation f(x, y) + z

2 = 0
has geometric genus p

g
≥ µ/4, but Némethi [14] has shown that for such a

surface singularity p
g
≤ µ/6. This means that the spectral numbers have to

lie closer to the middle than forced by the condition fQf = V
>0
Q

f .

Another argument is based on Hertling’s conjecture [12] on the variance
of the spectrum, which has been proved by Brélivet in the curve case [3]. If
α

j
+α

δ−j+1 ≥ 1, then α2

j
+α

2

δ−j+1
≥

1

2
so

∑

µ

i=1
α

2

j
≥ µ/4. On the other hand,

by Hertling’s conjecture

1

µ

µ
∑

i=1

α
2

j
≤

1

12
(α

µ
− α1) ≤

1

6
.
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Next we turn to the study of ωn−1

X
in the case n ≥ 2. Note that ωn−1

X
coincides

with Ωn−1

X
on X \ Σ. Moreover it fits in the exact sequence

0→ ω
n−1

X
→ Ωn(X)⊗O

X
→ Ωn+1(2X)⊗O

X

hence ωn−1

X
' j∗Ω

n−1

X
where j : X \ Σ ↪→ X. We see that ωn−1

X
' Ω̃n−1

X
if

X is a V-manifold. Let us look for the class of singularities which one may
admit for this to be true. Consider a good resolution π : (Y,E) → (X, x) of
an isolated n-dimensional singularity. Define

q
′(X, x) = `

(

j∗Ω
n−1

X
/π∗Ω

n−1

Y
(logE)(−E)

)

x

and the Du Bois invariant (cf. [18])

b
n−1,1(X, x) = `

(

R
1
π∗Ω

n−1

Y
(logE)(−E)

)

x

.

Then clearly one has the following theorem:

Theorem 5.4. Let X be an n-dimensional complex space with only isolated

singularities, with n ≥ 2. The following are equivalent:

1. ωn−1

X
= Ω̃n−1

X
;

2. q′(X, x) = b
n−1,1(X, x) = 0 for each singular point of X.

Indeed, if q′ = 0 then ω
n−1

X
= j∗Ω

n−1

X
= π∗Ω

n−1

Y
(logE)(−E), and if moreover

bn−1,1 = 0 then R
1
π∗Ω

n−1

Y
(logE)(−E) = 0 so

π∗Ω
n−1

Y
(logE)(−E) = Rπ∗Ω

n−1

Y
(logE)(−E) .

Conversely, the equality ω
n−1

X
= Ω̃n−1

X
implies equality of their Euler charac-

teristics, whose difference is equal to q′ + b
n−1,1.

Corollary 5.5. Suppose that (X, x) is an isolated hypersurface singularity.

Then q
′(X, x) + b

n−1,1(X, x) = τ(X, x)− s
n−1(X, x).

Next we investigate which surface singularities have q ′(X, x) = b
1,1(X, x) = 0.

First recall the following result of Wahl [20, Corollary 2.9] :

Theorem 5.6. For a two-dimensional smoothable normal Gorenstein singu-

larity with Milnor fibre F write µ = µ0 + µ+ + µ− from diagonalizing the

intersection pairing on H2(F,R). Then τ ≥ µ0 + µ− = µ− (2p
g
− 2g − b).

Here, p
g

is the geometric genus, b is the first Betti number of the dual graph of
a good resolution and g is the sum of the genera of the irreducible components
of its exceptional divisor.
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Theorem 5.7. For a two-dimensional smoothable normal Gorenstein singu-

larity the following are equivalent:

1. b1,1 = q
′ = 0;

2. τ = µ0 + µ− and g = 0.

Proof. In the surface case we have µ = s0 + s1 + s2 where s2 = p
g

and
s0 = p

g
−g−b. If b1,1 = q

′ = 0 then τ = s1 = µ−(2p
g
−g−b) = µ0+µ−−g hence

by Theorem 5.6 we have g = 0 and τ = µ0 + µ−. The converse implication is
similar.

Corollary 5.8. The following surface singularities satisfy q ′ = b
1,1 = 0:

1. rational double points (ADE-singularities)

2. cusps (singularities of type T
pqr

with 1

p
+ 1

q
+ 1

r
< 1);

3. generic µ-constant deformations of z2 +x
2a+1 +y

2a+2 (those which have

minimal Tjurina number).

Indeed, the rational double points have µ = τ = µ−, whereas the cusps have
µ+ = 1 = µ− τ . Finally, the last category of examples was considered in [20,
Example 4.6] and shown by Zariski to have 3a(a+ 1) = µ− 2p

g
.

Example 5.9. According to a computation using Singular, the singular-
ity x7 + x

4
y

2 + x
2
y

4 + y
7 + z

2 has µ = 27 and τ = 23. Moreover, p
g

= 3 and
b = 2, g = 0, and µ− (2p

g
− b) = 27− 4 = τ so q′ = b

1,1 = 0.

Example 5.10. The singularity x3 + y
10 + z

19 is considered in [13, Sect. 5].
A generic µ-constant deformation has τ = 246 whereas µ = 324 and p

g
= 39,

g = b = 0. So µ− τ = 2p
g

and q′ = b
1,1 = 0.

Example 5.11. It is not always so that for a generic µ-constant deformation
of a quasi-homogeneous surface singularity one has q ′ = b

1,1 = 0. The excep-
tional unimodal non-quasi-homogeneous singularities have τ = µ− 1, p

g
= 1

and g = b = 0. So µ0 = 0, µ− = µ− 2.
Take the singularity x5 + y

11 + z
2, also considered in [13, Sect. 5]. It has

µ = 40 and τmin = 34 whereas p
g

= 4, g = 0. That µ − τ ≤ 6 can be seen
from the spectral numbers. The submodule fQf of Qf = Ω3

/df ∧Ω2 is cyclic

with generator [fω] ∈ V >
87

110 = V
89

110 . But then

[xfω] ∈ V
111

110 , [yfω] ∈ V
99

110 = V
101

110 , [y2
fω] ∈ V

111

110 .

So the spectral numbers of the filtration of fQf induced by V have the gaps
91

111
and 93

110
.
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Question. Is this kind of lower bound for τ on the µ-constant stratum pro-
vided by the spectral numbers sharp?

Remark 5.12. The only example of an isolated hypersurface singularity in
dimension n ≥ 3 I know that satisfies q′ = b

n−1,1 = 0 is the ordinary double
point in dimension three. If Hertling’s conjecture is valid, I can prove that
no such singularities exist in dimension ≥ 9, and no rational singularity in
dimension ≥ 6.

Consider the special case of “double suspension” singularities g = f(x, y)+zw
with f squarefree. These are rational, and they belong to our class iff τ

f
= δ

f
.

By the inequality τ ≥ δ + m − r for curve singularities this implies that
r = m so f is a µ-constant deformation of a homogeneous singularity of
degree m. This has finite order monodromy and highest spectral number
1 − 2

m
and this implies that V − 2

mQ
f is in the kernel of multiplication by f .

Hence τ
f
≥ dimV

− 2

mQ
f = δ

f
+ 2m− 5 so τ

f
− δ

f
≥ 1 unless m = 2 and we

have the ordinary double point!

6 Application to Projective Hypersurfaces

In this section we come back to the problem mentioned in the introduction:
investigate the relation between the cohomology of a projective hypersurface
with isolated singularities and certain graded parts of its Jacobian ring.

We consider a hypersurface X = V (F ) ⊂ Pn+1 of degree d with at most
isolated singularities. Recall that Ωk(`X) is the sheaf of germs of meromorphic
k-forms on Pn+1 with poles of order at most k along X. We have inclusions
Ωk(`X) ⊂ Ωk((` + 1)X) and differentiation d : Ωk(`X) → Ωk+1((` + 1)X).
We defined

Ωk(logX) = ker(d : Ωk(X)→ Ωk+1(2X)/Ωk+1(X).

If X is smooth then the map d : Ωn(X)→ Ωn+1(2X)/Ωn+1(X) is surjective;
if X has isolated singularities, then the cokernel Ωn+1

X
(2X) of this map is a

skyscraper sheaf concentrated at the singular points ofX. Its stalk at x ∈ X is
isomorphic to the quotient of O

X,x
by the ideal generated by a local equation

f of X and the partial derivatives of f . This stalk has finite length τ(X, x),
the Tjurina number of (X, x).

By Bott’s vanishing theorem [2]

H
i(Ωn(X)) = H

i(Ωn+1(2X)/Ωn+1(X)) = 0 for i > 0,

so we have a resolution

0→ Ωn(logX)→ Ωn(X)
d

→ Ωn+1(2X)/Ωn+1(X)→ Ωn+1

X
(2X)→ 0
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of Ωn(logX) by sheaves which are acyclic, hence the cohomology groups of
the complex of global sections of these sheaves

0→ H
0(Ωn(X))→ H

0(Ωn+1(2X)/Ωn+1(X))→ H
0(Ωn+1

X
(2X))→ 0

are isomorphic to the cohomology groups of Ωn(logX). Explicitly we have
the complex

0→ S
d−n−2

E

→ S
⊕n+2

d−n−1

h

→ S2d−n−2/FSd−n−2 → H
0(Ωn+1

X
(2X))→ 0

where E(B) = (X0B, . . . , Xn+1B) (corresponding to the Euler vector field)
and

h(A0, . . . , An+1) =

n+1
∑

i=0

A
i

∂F

∂X
i

mod F

If X is smooth, we have the residue exact sequence

0→ Ωn

→ Ωn(logX)→ Ωn−1

X
→ 0

by which the cohomology groups of Ωn(logX) are identified with the primitive
cohomology groups Hn−1,1

prim
(X).

Lemma 6.1. If X is smooth, then

∑

n≥0

dimR
n
t
n =

(

t
d−1
− 1

t− 1

)

n+2

.

The proof uses the fact that the partials of F form a regular sequence in S,
so we have the Koszul complex resolving R.

Proposition 6.2. Let R = S/J (F ) as in the introduction. Then

dimR2d−n−2 = c
d
− dimH

0(X,Ωn(logX)).

Moreover, the map H
i(Ωn(logX)) → H

i(ωn−1

X
) is an isomorphism for i 6=

n− 1 and we have the exact sequence

0→ H
n−1(Ωn(logX))→ H

n−1(ωn−1

X
)→ H

n(Ωn)→ 0.

Proof. Note that

R2d−n−2 = coker(S⊕n+2

d−n−1

h

→ S2d−n−2/FSd−n−2)

and that ker(h) = im(E) in the smooth case. Hence

cd = dimS2d−n−2 − (n + 2) dimS
d−n−1 =

(

2d− 1

n+ 1

)

− (n + 2)

(

d

n+ 1

)
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and

ker(h)/im(E) = H
0(X,Ωn(logX))) = ker

(

S
⊕(n+2)

d−n−1
→ S2d−n−2

)

.

To prove the remaining statements, note that H i(Ωn) = 0 for all i 6= n. So
we only have to show that Hn(Ωn)→ H

n(Ωn(logX)) is the zero map. We do
this by induction on n. The case n = 1 is obvious. Let n ≥ 2. Consider a
general hypersurface L ⊂ Pn+1; we have the commutative diagram with exact
rows

0 Ωn Ωn(logL) Ωn−1

L
0

0 Ωn(logX) Ωn(logL+X) Ωn−1

L
(logX ∩ L) 0 ,

which gives rise to the commutative diagram

H
n−1(Ωn−1

L
)

a

b

H
n−1(Ωn−1

L
(logX ∩ L))

H
n(Ωn) c

H
n(Ωn(logX))

By Lefschetz’ theory, the Gysin map b is an isomorphism, and by induction
hypothesis a is the zero map. Hence c is the zero map.

Corollary 6.3. Suppose that H0(Ωn(logX)) = 0. Then R2d−n−2 has the

expected dimension c
d

and we have the exact sequence

0→ H
1(Ωn(logX))→R2d−n−2 → H

0(X,Ωn+1

X
(2X))→ H

2(Ωn(logX))→ 0
(4)

Moreover H i(Ωn(logX)) = 0 for all i ≥ 2.

From now on we suppose that ωn−1

X
' Ω̃n−1

X
, i.e. q′ = b

n−1,1 = 0 for all singular
points of X. Moreover we will suppose that n ≥ 2, as in the case n = 1 there
are no singular points on X. This guarantees that we have isomorphisms

H
i(Ωn(logX)) ' Grn−1

F
H

n−1+i(X)prim. (5)

Lemma 6.4. H i(Pn+1
,Ωn(logX)) = 0 for all i 6= 1, 2

Proof. This follows from (5) and the fact that for a hypersurface X in Pn+1

with isolated singularities one has Hk(Pn+1
,Q) ' H

k(X,Q) for all k 6= n, n+
1, 2n.

Corollary 6.5. dimR2d−n−2 = c
d
. Moreover we have the exact sequence

0→ H
1(Ωn(logX))→R2d−n−2 → H

0(X,Ωn+1

X
(2X))→ H

2(Ωn(logX))→ 0
(6)
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Let G be a homogeneous form of degree d which does not vanish at the
singularities of X. Then there exists ε > 0 such that for t ∈ C with 0 < |t| < ε

the hypersurface X
t

given by F + tG = 0 is smooth. We let Rt denote its
Jacobian ring. Note that lim

t→0 J (F+tG)
k

makes sense in the Grassmannian
of S

k
, and that it contains J (F )

k
. Hence, asR

k
andRt

k
have equal dimension,

they are equal. So we have the exact sequence

0→ H
1(X, Ω̃n−1

X
)prim → R2d−n−2 → Grn−1

F
H

n(φC)→ H
2(X, Ω̃n−1

X
)prim → 0

(7)
Under our hypotheses, the sequences (6) and (7) are identical !

Remark 6.6. Our reasoning also applies to hypersurfaces in weighted pro-
jective spaces, as long as they are transverse to the singular strata (so have
isolated singularities only at regular points of the ambient space).
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Sextic Surfaces with 10 Triple Points

Jan Stevens

To Gert-Martin Greuel on his 60th birthday

Abstract

All families of sextic surfaces with the maximal number of isolated
triple points are found.

Evaluation of the conditions imposed by ten triple points requires the solu-
tion of complicated systems of equations. Thanks to Gert-Martin’s efforts the
computer algebra system Singular [3] is around, making such computations
possible.

Surfaces in P3(C) with isolated ordinary triple points have been studied
in [2]. The results are most complete for degree six. A sextic surface can have
at most ten triple points, and such surfaces exist. For up to nine triple points
[2] contains a complete classification. In this note I achieve the same for ten
triple points.

The study of sextics with nine triple points is easier, because they do lie
on a quadric Q. Given such a sextic with equation F the general element of
the pencil αF +βQ3 is again a sextic with nine isolated triple points. It turns
out that such a pencil also contains reducible surfaces, which are much easier
to construct. The same argument shows that a sextic with ten triple points
is a degeneration of one with nine (simply choose a quadric through nine of
the ten points).

Therefore one can look for sextics with ten triple points in each of the
five families given in [2]. In fact it suffices to consider only those two, which
have a rather nice description. The one-parameter family of examples [2]
was found in the first family by imposing extra symmetry. The surfaces in
the other family have the simplest equations of all. Nevertheless I could not
find a single solution, because I was looking at the wrong place: as explained
below, I made an unwarranted general position assumption. Different families
of sextics are connected by Cremona transformations. By transforming the

1991 Mathematics Subject Classification. 14J10, 14J26

Key words. sextic surface, triple point, Cremona transformation
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known example I found the right assumptions. The equations for a tenth
triple point in the family become very simple, as I had hoped all the time.

The equations for the tenth point come from the ten second partial
derivatives of the defining function. The families with nine triple points de-
pend on seven or eight moduli. The unknown position of the tenth singular
point adds three more variables. One gets a very complicated system, which
only can be attacked by using the special structure of the equations. The
main problem is to cut away unwanted solutions corresponding to surfaces
with nonisolated singularities. In homogeneous equations I get rid of solutions
lying in a hypersurface Q = 0 by adding the inhomogeneous equation Q− 1,
computing a Gröbner base and finally homogenising again with the function
Q.

The main result is that there are four different families of sextics with
ten triple points, each depending on three moduli. They are distinguished by
the number of (−1)-conics, which ranges from two to five.

1 Nine Triple Points

The clue to the classification of sextics with many triple points is the study
of exceptional curves of the first kind on the minimal resolution. Let X be
a sextic with isolated triple points and ˜X its minimal resolution. Whenever
the canonical divisor K

e

X
is effective, any exceptional curve of the first kind

E is automatically a component, as K
e

X
· E = −1. Therefore E comes from

a rational curve on X which is contained in the base locus of the system
of quadrics through the triple points. Assume that X has nine triple points
P1, . . . , P9. Let Q be the unique (irreducible) canonical quadric surface and let

K = Q ·X be the adjoint curve. The resolution ˜X has exactly three disjoint
(−1)-curves C1, C2, C3 of degrees c1, c2, c3 which are components of K. There

are two possibilities: either C1 + C2 + C3 = K or not. In the first case ˜X is
a K3 surface blown up in three points. By [2], Prop. 4.10, there are up to
permutation three choices for the degrees:

(c1, c2, c3) ∈ {(2, 2, 8), (2, 4, 6), (4, 4, 4)}.

In the second case one ends up with an effective canonical divisor after blowing
down C1, C2 and C3. Now ˜X is the blowup of a minimal properly elliptic
surface in three points and by [2], Prop. 4.9, up to permutation

(c1, c2, c3) ∈ {(2, 2, 2), (2, 2, 4)}.

In all cases the curves C
i
of degree c

i
can be constructed as complete inter-

section of Q and a surface of degree c
i
/2. In particular, if c

i
= 2, five points



Sextic Surfaces with Ten Triple Points 317.

type surface P1 P2 P3 P4 P5 P6 P7 P8 P9

K1 0 2 1 1 1 1 1 1 1
(4, 4, 4) K2 1 0 2 1 1 1 1 1 1

K3 2 1 0 1 1 1 1 1 1

L1 1 0 0 0 0 1 1 1 1
(2, 4, 6) K2 0 2 1 1 1 1 1 1 1

C3 2 1 2 2 2 1 1 1 1

L1 1 0 0 0 0 1 1 1 1
(2, 2, 8) L2 0 1 1 1 0 0 0 1 1

Q3 2 2 2 2 3 2 2 1 1

Table 1: Multiplicities at the singular points in the K3-case

lie on a conic in a plane. Such a conic will be called a (−1)-conic. I call the
triple (c1, c2, c3) the type of the surface.

For (c1, c2, c3) ∈ {(2, 2, 8), (2, 4, 6), (4, 4, 4)} there exists a seven parame-
ter family of sextic surfaces with nine triple points ([2], Thm. 4.13). Moreover
X occurs in a pencil of the form

α K1K2K3 + β Q
3 = 0 , if (c1, c2, c3) = (4, 4, 4) ,

α L1K2C3 + β Q
3 = 0 , if (c1, c2, c3) = (2, 4, 6) ,

α L1L2Q3 + β Q
3 = 0 , if (c1, c2, c3) = (2, 2, 8) .

Here Q is the unique canonical surface, Li
stands for a linear form, K

i
for

a singular quadric, C3 defines a four nodal cubic and Q3 a quartic surface
with a triple point and six double points. The multiplicities of the three
surfaces in the nine singular points are displayed in Table 1. Note that I do
not distinguish between a surface and the form defining it, which I also call
its equation. Figure 1 shows a surface of type (4, 4, 4). The picture was made
with Stephan Endraß’ program surf [1].

For (c1, c2, c3) ∈ {(2, 2, 2), (2, 2, 4)} there exists an eight parameter family
of sextic surfaces with nine triple points ([2], Thm. 4.14). Moreover X occurs
in a web of the form

α L1L2L3C + β L1L2L3HQ + γ Q
3 = 0 , if (c1, c2, c3) = (2, 2, 2) ,

α L1L2K3Q
′ + β L1L2K3Q + γ Q

3 = 0 , if (c1, c2, c3) = (2, 2, 4) .

Again L
i

stands for a linear form. In the case (2, 2, 2) the plane H passes
through the three triple points not lying on the double lines of L1L2L3. The
reducible cubic HQ is an element of the pencil of cubics through all points
with double points in P7, P8 and P9, and C is another such cubic. In the
case (2, 2, 4) the surface K3 is a quadric cone and Q

′ is a smooth quadric not
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passing through P6. The multiplicities in the nine triple points of the surfaces
giving (−1)-curves are displayed in Table 2. A surface of type (2, 2, 2) is shown
in Figure 2.

Figure 1: A surface of type (4, 4, 4) with nine triple points

type surface P1 P2 P3 P4 P5 P6 P7 P8 P9

L1 0 0 1 1 1 1 1 0 0
(2, 2, 2) L2 1 1 0 0 1 1 0 1 0

L3 1 1 1 1 0 0 0 0 1

L1 0 0 1 1 1 1 1 0 0
(2, 2, 4) L2 1 1 0 0 1 1 0 1 0

K3 1 1 1 1 0 1 1 1 2

Table 2: Multiplicities in the properly elliptic case

The three families of blown-up K3-surfaces are related via Cremona
transformations. The ordinary plane Cremona transformation is the ratio-
nal map defined by the linear system of conics through three points in
general position. In suitable coordinates it can be given by the formula
(x : y : z) 7→ (1/x : 1/y : 1/z). This formula generalises to higher dimensions. In
particular, the space transformation, also known as reciprocal transformation,

(x : y : z : w) 7→

(

1

x
:
1

y
:
1

z
:
1

w

)
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Figure 2: A surface of type (2, 2, 2) with nine triple points

simultaneously blows up the vertices and blows down the faces of the coordi-
nate tetrahedron. The vertices are called fundamental points of the reciprocal
transformation. Let X ⊂ P3 by a surface of degree d not containing any of the
coordinate planes. Let m1, . . . , m4 be the multiplicities of X in the fundamen-
tal points. Then the image Y of X is a surface of degree 3d−m1 − · · · −m4.
In many cases X will be singular in the fundamental points with singularities
obtained from contracting the intersection curves of X with the coordinate
planes.

Specifically, a reciprocal transformation with fundamental points P1, P2,
P4 and P5 (see Table 1) will transform a surface of type (4, 4, 4) into one of
type (2, 4, 6). To get from there to a surface of type (2, 2, 8) one can apply
a transformation with fundamental points P2, P5, P6 and P7. The two other
families are also related via reciprocal transformations.

2 Families with Ten Triple Points

For a sextic surface X with ten isolated triple points p
g
( ˜X) = 0 ([2], Cor. 4.6)

so the ten points never lie on a quadric. Leaving out one point the remaining
nine triple points determine a quadric Q. The general element of the pencil
spanned by the sextic and Q

3 is a surface with nine isolated triple points and
belongs therefore at least to one of the five families above.



320. J. Stevens

Lemma 2.1. A sextic with ten triple points belongs to the closure of the

family of type (2, 2, 2) or of the family of type (4, 4, 4).

Proof. No three triple points lie on a line ([2], Lemma 3.1). Two different
(−1)-conics meet in two triple points ([2], Cor. 4.8). I study the planes con-
taining (−1)-conics. If three planes have a line in common, there would be
2 + 3 · 3 = 11 triple points; if four planes have a triple point in common, they
contain 1 + 6 + 4 = 11 points, again contradicting that the surface has ten
triple points. The number of planes is at most six. If there are exactly six,
then each triple point lies in three planes, and leaving out one of the points
gives sextics with three planes, so of type (2, 2, 2). If there are five planes,
ten lines each contain two triple points, so five points lie in three planes and
five only in two. Leaving out a point in only two planes gives a sextic of type
(2, 2, 2). If there are four planes and only one point lies in three of them,
the fourth plane contains six points. So there are at least two points in three
planes each. A plane containing them both has only four points on intersec-
tion lines so leaving out the fifth point in such a plane gives a sextic of type
(2, 2, 2). If there are three planes, they can contain at most nine points, so
leaving out the point not on a plane keeps three planes. If there are only two
planes one can leave out a point on the intersection line to get sextics without
planes, so of type (4, 4, 4). If there is only one plane leave out any point in
that plane.

2.1 Type (2, 2, 2)

I describe equations for the surfaces. After a change of coordinates one may
assume that the three planes are the sides of the coordinate tetrahedron.
The remaining coordinate transformations are given by diagonal matrices.
On each axis in affine space lie two points and three additional ones lie on
the triangle at infinity. I take them to be P7 = (0 : 1 :λ : 0), P8 = (µ : 0 : 1 : 0)
and P9 = (1 : ν : 0 : 0). The equation has now the form

α Q
3 + β xyztQ + γ xyzK ,

with K is a four-nodal cubic passing through (0 : 0 : 0 : 1). With notation
slightly different from [2] I get

Q = c1c2c3t
2 + t(b1c2c3x + b2c1c3y + b3c1c2z)

+ c2c3x(νx− y − µνz) + c1c3y(λy − z − λνx) + c1c2z(µz − x− λµy) ,

K = t
2(λνc1x + λµc2y + µνc3z)

+ t
(

λb1x(νx− y − µνz) + µb2y(λy − z − λνx) + νb3z(µz − x− λµy)
)

+ (νx− y − µνz)(λy − z − λνx)(µz − x− λµy) .
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I use the remaining freedom in coordinate transformations to place the puta-
tive tenth triple point in (1 : 1 : 1 : 1). I compute in the affine chart t = 1. The
condition for a triple point is then that the function, its derivatives and the
second order derivatives vanish at (1, 1, 1). This gives ten equations which are
linear in α, β and γ, so they may be eliminated: the maximal minors of the
coefficient matrix have to vanish. One has

∂Q3

∂x
= 3Q2

Q
x

,
∂2

Q
3

∂x2
= 3Q2

Q
xx

+ 6QQ
2

x
,

∂2
Q

3

∂x∂y
= 3Q2

Q
xy

+ 6QQ
x
Q

y
.

All these expressions are divisible by Q. Now I plug in x = y = z = 1. From
Q, I get

Q(1, 1, 1)

= c1c2c3+c2c3(b1+ν−1−µν)+c1c3(b2+λ−1−λν)+c1c2(b3+µ−1−λµ) ,

an expression which I continue to denote by Q. One also gets expressions for
all derivatives. Likewise

K = λνc1 + λµc2 + µνc3

+ λb1(ν − 1− µν) + µb2(λ− 1− λν) + νb3(µ− 1− λµ)

+ (ν − 1− µν)(λ− 1− λν)(µ− 1− λµ) .

Furthermore,

∂ xyzK

∂x

∣

∣

∣

∣

(1,1,1)

= (yzK + xyzK
x
)|(1,1,1)

= K + K
x

,

∂
2
xyzK

∂x2

∣

∣

∣

∣

(1,1,1)

= (2yzK
x

+ xyzK
xx

)|(1,1,1)
= 2K

x
+ K

xx
,

∂
2
xyzK

∂x∂y

∣

∣

∣

∣

(1,1,1)

= (zK + xzK
x

+ yzK
y
+ xyzK

xy
)|(1,1,1)

= K + K
x

+ K
y
+ K

xy
.

After dividing the first row by Q, which is allowed because the tenth triple
point does not lie on the quadric Q, the matrix has the following form:





Q2 3QQ
x

. . . 3QQ
xx

+ 6Q2

x
. . . 3QQ

xy
+ 6Q

x
Q

y
. . .

Q Q + Q
x

. . . 2Q
x

+ Q
xx

. . . Q + Q
x

+ Q
y
+ Q

xy
. . .

K K + K
x

. . . 2K
x

+ K
xx

. . . K + K
x

+ K
y
+ K

xy
. . .



 .

The vanishing of the maximal minors is the necessary condition for multiplic-
ity 3 in the point (1, 1, 1), but it is not sufficient for the existence of a surface
with only isolated singularities. One has to cut away unwanted solutions, like
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Q = Q
x

= Q
y

= Q
z

= 0, which makes all minors vanish, but does not give
isolated triple points. The minors are rather formidable expressions. I first
simplify the matrix itself.

I start by subtracting 3Q times the second row from the first row to
remove all second derivatives from the first row. After that I apply only
column operations. Some experimentation with the matrix showed that it is
possible to get two zeroes in one column. Observe that Q

xx
+2νQ

xy
+ν

2
Q

yy
=

0. Note that one can write Q(x, y, z, t) = 1

2
Q

xx
x

2+Q
xy

xy+· · ·+ 1

2
Q

tt
t
2, as the

second derivatives are constants. The identity Q
xx

+ 2νQ
xy

+ ν
2
Q

yy
= 0 now

follows from the fact that the point (1 : ν : 0 : 0) lies on the quadric. The same
point is a double point of the cubic K, so all first derivatives vanish, giving by
the same argument that (K

w
)
xx

+2ν(K
w
)
xy

+ν
2(K

w
)
yy

= 0, where w is one of
(x, y, z, t). Applying Euler’s relation 3K = xK

x
+yK

y
+zK

z
+tK

t
in the point

(1 : 1 : 1 : 1) yields by adding that also K
xx

+ 2νK
xy

+ ν
2
K

yy
= 0, where now

K
xx

again stands for a second derivative evaluated in (1, 1, 1). Equivalent
equations hold for the other second partials. Therefore one can get three
columns with two zeroes by means of elementary column operations. To do
this one needs to multiply one column, say the one containing containing Q

xx
,

with 1+λµν. The vanishing of this factor expresses that the three points P7,
P8 and P9 lie on a line, so multiplying may introduce new unwanted solutions,
which have to be cut away later on in the computation. The result is





−2Q2
−Q

2
. . . Q

2
− 3QQ

x
− 3QQ

y
+ 6Q

x
Q

y
. . . E

ν
. . .

Q Q
x

. . . Q
xy

. . . 0 . . .

K K
x

. . . K
xy

. . . 0 . . .



 ,

where Eν
is the first of three similar equations

E
ν
: (ν2 + ν + 1)Q2

− 3(ν + 1)Q(νQ
y
+ Q

x
) + 3(νQ

y
+ Q

x
)2

,

E
λ
: (µ2 + µ + 1)Q2

− 3(µ + 1)Q(µQ
x

+ Q
z
) + 3(µQ

x
+ Q

z
)2

,

E
µ
: (λ2 + λ + 1)Q2

− 3(λ + 1)Q(λQ
z
+ Q

y
) + 3(λQ

z
+ Q

y
)2

.

These equations have to hold, for if E
ν
6= 0, then α = 0 and the equation

for the sextic is divisible by xyz. Considered as quadratic equation in Q and
νQ

y
+ Q

x
the equation E

ν
has discriminant −3(ν − 1)2. The case ν = 1 is

excluded: if ν = 1 then 0 = Q
x
+Q

y
−Q = c1c2(c3 +b3 +µ), which means that

the point (0, 0, 1) is a triple point, which lies on the line through the tenth
point (1, 1, 1) and P9 = (1 : 1 : 0 : 0). Therefore no solution is defined over R.
One has to adjoin

√

−3 or what amounts to the same, the third roots of unity.
Factorising Eκ

, κ = λ, µ, ν, gives linear equations, which express Q
x

+
νQ

y
, Q

y
+ λQ

z
and Q

z
+ µQ

x
as multiples of Q. To express Q

x
, Q

y
and

Q
z

themselves as multiples of Q one has to multiply with the determinant
1 + λµν of the system. After multiplying the fifth, sixth and seventh column
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of the matrix I use the first column to get zeroes on the first row in all other
columns. This reduces the problem to the minors of a (2× 6)-matrix.

The analysis up to this point is basically contained in [2]. To proceed
further note that the three linear equations are in fact linear in b1c2c3, b2c1c3

and b3c1c2. Therefore they can be used to eliminate the b
i
. For the second row

this is quite easy to do: by column operations remove the b
i
from column 5, 6

and 7 and then take suitable linear combinations of columns 2, 3 and 4 with
coefficients polynomials in (λ, µ, ν) such that the entries on the second row
have the same coefficients at the b

i
c
i
jc

k
as the three equations. For the third

row one has to first multiply with a quite complicated determinant, which
leads to long expressions. At this stage the use of the computer becomes
indispensable. The new second column turns out to be divisible by ν−1, and
likewise the third by λ − 1, the fourth by µ − 1. After division the entries
(2, 2), (2, 3) and (2, 4) are equal, which means that one again gets columns
with two zeroes, giving two equations. From the remaining (2 × 4)-matrix
I take the 6 maximal minors. Now I have a system of 8 rather complicated
equations in 6 variables. I still have to cut away unwanted solutions, those
lying in Q = 0, λµν + 1 = 0, λ = 1, µ = 1, ν = 1 and c

i
= 0. This can be

done in Singular as follows. First homogenise with an extra variable h. To
cut away the solutions in Q = 0 adjoin the inhomogeneous equation Q − 1,
where Q is made homogeneous with h, and compute a standard basis. Then
homogenise again with Q. By doing the same for the other unwanted solutions
one finally obtains equations of reasonably low degree. To do the calculation
in reasonable time it is best to compute over a finite field Z/pZ containing
the third roots of unity. One can then try to lift the result to characteristic
zero and check whether the guessed equations really solve the system.

Let ε be a primitive third root of unity. I first take the same root to solve
the three equations E

κ
:

3(νQy
+ Q

x
)− ((1− ε

2)ν + (1− ε))Q = 0 ,

3(µQ
x

+ Q
z
)− ((1− ε

2)λ + (1− ε))Q = 0 ,

3(λQ
z
+ Q

y
)− ((1− ε

2)µ + (1− ε))Q = 0 .

By eliminating c2 and c3 I end up with one equation which is quadratic in c1,
so the solution space is three dimensional. The equations are rather involved,
and I do not give them here.

A cyclic permutation of the variables (x, y, z) in the original configuration
induces a cyclic permutation of each of the triples (b1, b2, b3), (c1, c2, c3) and
(λ, µ, ν). A transposition of x and y has a more complicated effect on the
coefficients. On the points P7, P8, P9 it acts as (0 : 1 :λ : 0) 7→ (1 : 0 :λ : 0) =
(1/λ : 0 : 1 : 0), (µ : 0 : 1 : 0) 7→ (0 :µ : 1 : 0) = (0 : 1 : 1/µ : 0) and (1 : ν : 0 : 0) 7→
(ν : 1 : 0 : 0) = (1 : 1/ν : 0 : 0). The induced action on the coefficients is therefore
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((λ, µ, ν) 7→ (1/µ : 1/λ : 1/ν). By also considering P1, . . . , P6 one finds that
(c1, c2, c3) 7→ (c2/λν, c1/µν, c3/λµ) and (b1, b2, b3) 7→ (b2/λν, b1/µν, b3/λµ).
After clearing denominators in Q(x, y, z) and K(x, y, z). the equation 3(νQ

y
+

Q
x
) − ((1 − ε

2)ν + (1 − ε))Q = 0 is transformed into 3(νQ
y

+ Q
x
) − ((1 −

ε
2) + (1 − ε)ν)Q = 0. By taking a particular normal form of the family I

found two components, one with ε and one with ε2, but the surfaces in those
components are isomorphic. As the permutation of x and y is isotopic to the
identity there is only one component (of dimension 3 + 15) in the space of all
sextics.

Now I take different roots of unity in the equations E
κ
. By using permu-

tations of (x, y, z) it suffices to consider:

3(νQ
y
+ Q

x
)− ((1− ε

2)ν + (1− ε))Q = 0 ,

3(µQx
+ Q

z
)− ((1− ε

2)λ + (1− ε))Q = 0 ,

3(λQ
z
+ Q

y
)− ((1− ε)µ + (1− ε

2))Q = 0 .

I start the computation as described above. The two equations coming from
the second row of the matrix factorise. Disregarding a factor (λµν + 1) the
equations are

(λµc2 − c3)
(

νc1c2c3 − (ν(ε2 + λ)c1c3 − νc2c3 − εc1c2)(µν − ν + 1)
)

,

(λνc1 − c2)
(

µc1c2c3 − ((εν + 1)c1c3 − ε
2
µνc2c3 − µc1c2)(λµ− µ + 1)

)

.

Applying a suitable transposition of the coordinates induces a transformation
which sends the first equation to the second one with ε replaced by ε

2.
One finds one three dimensional solution by taking both long factors.

One has µc2 = (λµ−µ+1)(µν−ν +1) and a quadratic equation in c1, which
I do not describe here.

Another three dimensional solution is found by taking the equations
λµc2 − c3 and µc1c2c3 − ((εν + 1)c1c3 − ε

2
µνc2c3 − µc1c2)(λµ − µ + 1). The

other possible choice gives a solution, isomorphic to the complex conjugate
of this one. It might seem that one gets two different solutions, but as I shall
show, the surfaces in question can also be written in a different way as a
degeneration of a sextic of type (2, 2, 2). Both solutions are slices of the same
component in the space of all sextics. This time there is a linear equation for
c1:

c1 + ε
2(λµ− µ + 1)(λµν + εµν − εν − ε

2) = 0 .

One has already c3 = λµc2 and one finds

(λµν + εµν + ε
2
ν − ε

2)c3 + ε(ελν + λ− 1)c1 = 0 .

Finally, taking c3 = λµc2 and c2 = λνc1 gives a two dimensional solution
consisting of two components, one of which lies inside the last component
just found, and the other in the one obtained by interchanging the equations.
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Proposition 2.2. The family of sextic surfaces of type (2, 2, 2) with nine

triple points contains in its closure three different families of sextics with ten

triple points, which contain three, four or five (−1)-conics.

Proof. There are at most three different families. I distinguish between them
with the number of (−1)-conics. A (−1)-conic not in a coordinate plane lies
in a plane, whose intersection with one of the three coordinate planes can
have at most two triple points. It has to contain at least two of the points P1,
. . . , P6 on the coordinate axes, because P7, P8, P9 and P10 are not coplanar.
But if the plane contains a point on a coordinate axis, it contains only two
other triple points on the coordinate planes through the point and therefore
it contains the two points not in these planes. If there are three points of the
points P1, . . . , P6 in the plane, it therefore contains again P7, P8, P9 and P10.
Therefore there are only three possible planes which can contain a (−1)-conic,
namely the planes through P10 and two of P7, P8 and P9. The equation for
the plane through P7, P8 and P10 is µz − x− λµy + λµ− µ + 1.

To determine the number of (−1)-conics in each family it suffices to do
it for a specific example. One obtains three conditions by requiring that the
points (1 : 0 : 0 : 1), (0 : 1 : 0 : 1) and (0 : 0 : 1 : 1) are triple points. This gives the
equations c1 +b1 +ν = 0, c2 +b2 +λ = 0 and c3 +b3 +µ = 0. In the first family
one finds λ = µ = ν, c1 = c2 = c3, ν

4
−3εν2 +ε

2 = (ν2 +ε
2
ν−ε)(ν2

−ε
2
ν−ε),

c
2

3
+(1−ε

2)ν2
−ε+1. In the last family found above one gets λ = ν, µ−2ε2

ν+3,
c1 = c3, c3 + (ε2

− 1)ν + ε− 1, ν
2
− εν − ε

2 and c2 + (ε− ε
2)ν. For the third

family this specialisation does not work, so a different one is needed. Checking
in finite characteristic makes sure that there really exists a sextic with ten
isolated triple points for these parameter values.

Now determine whether one of the three planes contains more than three
triple points. The result is that the first family does not contain extra (−1)-
conics. The second family contains one extra (−1)-conic, the plane through
P7, P8 and P10, which also contains a point on the x-axis and on the y-axis,
with coordinates (c1 : 0 : 0 : ν) resp. (0 : c2 : 0 : l).

I specialise the third family by taking suitable values for λ, µ and ν. A
good choice is λ = µ = −1, ν = ε. Compute the intersection points of the
three planes with the coordinate axes and check whether they are triple points.
The equations reduce to 3b1+c1+9ε, b2+2ε−4, c2−6ε+3, (ε+3)b3+c3−5ε−8
and a quadratic equation for c1, which does not factor in an easy way. For
both values of c1 the two points on the y-axis are given by (y−3)(y +2ε−1),
on the x-axis lies (3, 0, 0) and on the z-axis (0, 0, ε + 3). The result is that
there are two extra (−1)-conics, the one through P7, P8 and P10 and the one
through P8, P9 and P10.

Remark 2.3. The computation shows that there are no sextics with ten
isolated triple points and six (−1)-conics. The arguments proving Lemma 2.1
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do not exclude such a configuration. In fact one can take the three planes in
the proof above and take as the points on the coordinate axes the intersection
points with these planes. But a sextic with these isolated triple points occurs
in a pencil, containing also the product of the six planes. The matrix above
should then have rank one. The first 2× 2 minor gives the equation Q

2(Q−
2Q

x
) = 0, so together with the equations E

κ
one finds Q = 0, contradicting

the fact that the ten points do not lie on a quadric.

2.2 Type (4, 4, 4)

To complete the classification of sextics with ten triple points I look for a
tenth triple point in the family of type (4, 4, 4). Equations for the family are
given in [2], which depend on seven parameters. It is convenient to work with
more parameters, which then allows to take the tenth point in fixed position.

I take three quadratic cones K
i
with vertices P

i+1 at infinity such that K
i

passes through P
i−1 but not through P

i
, where the indices are taken modulo

3. In general the quadrics intersect in eight distinct points. I require that two
of them are the points (0, 0, 0) and (u, v, w). The six remaining points will be
the triple points of the sextic. I get

K1 = wx
2 + auz + bwx− (a + b + u)xz ,

K2 = uy
2 + cvx + duy − (c + d + v)xy ,

K3 = vz
2 + ewy + fvz − (e + f + w)yz .

To compute Q, the quadric through P1, . . . , P9, but not through (0, 0, 0) and
(u, v, w), note that the K

i
lie in the ideal (u− x, v− y, w− z). One can write





K3

K1

K2



 =





0 (f + z)z (e− z)y
(a− x)z 0 (b + x)x
(d + y)y (c− y)x 0









u− x

v − y

w − z



 .

Dividing the determinant of the matrix by xyz gives the inhomogeneous equa-
tion

Q = (a− x)(c− y)(e− z) + (b + x)(d + y)(f + z)

which is indeed the sought quadric. Note that my equations are homogeneous
in the coefficients a, . . . , w and the affine coordinates x, y, z together.

The obvious thing to do now is to determine the conditions under which
a surface λK1K2K3 + µQ

3 has a triple point in (x, y, z) = (1, 1, 1). Despite
great efforts I did not succeed in finding a single example. Finally I decided to
compute the transformations which bring the known example from [2] (which
is the same as the specific example in the first family above) into this family.
The result was that the tenth point lies in the plane at infinity. In fact, a
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long, but doable computation with Singular shows that only solutions of
the equations occur when (1, 1, 1) lies on the quadric Q or one of the cones
K

i
.

Therefore, I search now under the

Assumption. The point (1 : 1 : 1 : 0) is a triple point.

For the pencil α K1K2K3 + β Q
3 I compute all ten second partial derivatives

and evaluate them in (1 : 1 : 1 : 0). The resulting equations are linear in α and
β, so I eliminate these variables and end up with a 2× 10 matrix.

The vanishing of the minors of the matrix is again a necessary condition,
for the existence of a sextic with ten triple points, but it is not sufficient for
isolated triple points. Indeed, there are some easy to see ‘false’ solutions: if
K1 = K2 = K3 = 0, then the whole first row vanishes (I take at most second
derivatives of the product K1K2K3) and I get β = 0. Also, if a + b = c + d =
e + f = 0, the second row vanishes. The ten points cannot lie on the quadric
Q. I only want solutions with Q 6= 0, K1 6= 0, K2 6= 0 and K3 6= 0.

My equations are homogeneous in a, . . . , z. Moreover, the derivatives not
involving t depend only on the sums a + b, c + d, e + f and the u, v, w: note
that Q|

t=0 = (a+b)yz+(c+d)xz+(e+f)xy and K1|t=0 = wx
2
−(a+b+u)xz.

This means that I can start by analysing the six first columns. I cut away
one after another the solutions lying in Q = a + b + c + d + e + f = 0,
K1 = w− (a + b + u) = 0, K2 = 0 and K3 = 0. To dispose of the solutions in
a hyperplane L = 0 add the inhomogeneous equation L = 1 and compute a
standard basis. Afterwards make the equations homogeneous again.

The computation with Singular gives twelve equations. They define two
complex conjugate components. Eliminating a, c and e gives two equations

(b + d + f)2 + (b + d + f)(u + v + w) + (u + v + w)2
,

uv + uw + vw .

Again one has to adjoin the third roots of unity. With ε a primitive third root
of unity one finds two components, one of them given by

e + f + ε
2
v − εw

c + d + ε
2
u− εv

a + b + ε
2
w − εu

b + d + f − ε(u + v + w)

uv + uw + vw .
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I give an explicit example: v = w = 2, u = d = −1, b = 0, so

K1 = 2x2
− (ε + 2)z + ε

2
xz ,

K2 = −y
2 + 2εx + y + ε

2
xy ,

K3 = 2z2
− 2ε2

y + (6ε + 2)z + 4ε2
yz ,

Q = −(ε + 2− x)(ε− y)(ε2 + z) + x(y − 1)(z + 3ε + 1) .

Then 27 K1K2K3 + 2 Q
3 has ten ordinary triple points. To find them it is

convenient to compute in finite characteristic p. After some experimentation
I found that for p = 67 with ε = −30 all points are defined over the base
field.

Proposition 2.4. The family of sextic surfaces of type (4, 4, 4) contains in

its closure one family of sextics with ten triple points, which each contain two

(−1)-conics.

Proof. One of the intersection points of the quadric cones K
i
lies in the plane

t = 0. To see this observe that K3|t=0 = z(vz + ε
2(v + w)y). By cyclic

permutation one gets three lines vz + ε2(v + w)y, wx + ε
2(w + u)z and uy +

ε2(u + v)z. The condition that they pass though one point is

(u + v)(v + w)(w + u) + uvw = (u + v + w)(uv + uw + vw) = 0 ,

which is satisfied on the component.
The intersection point is (ε2

uw : εuv : vw : 0). Together with the tenth
point (1 : 1 : 1 : 0) it lies on the line t = x + εy + ε2

z = 0. One of the planes in
the pencil of planes through this line contains three more triple points. It can
be found by transforming the coordinates (x, y, z) into the eigenfunctions of
cyclic permutation, making x+εy+ε2

z into a coordinate and eliminating the
others. The computation is best done in finite characteristic. Once the result
is known one can find a derivation. One can observe the following factorisation
modulo the ideal defining the component

uK3 + ε
2
vK1 + εwK2 ≡ (ε2

vwx + wuy + εuvz)(x + εy + ε
2
z + e + εd) .

In the affine chart t 6= 0 the six common points of the quadric cones lie
therefore on two planes. The first factor contains the point (u, v, w), while
the second factor is the sought plane of the pencil. Note also that x + εy +
ε2

z + e + εd and y + εz + ε
2
x + a + εf give the same plane.

Leaving out the point P9 = (ε2
uw : εuv : vw : 0) realises the surface in

a different way as special element in a pencil of type (4, 4, 4). A coordinate
transformation brings it in standard form. To determine it requires the po-
sition of the three vertices, so I only computed in my specific example. I
obtained values for the parameters (a, . . . , f, u, v, w) and computed that they
satisfy the equations for the complex conjugate component. This shows that
there is only one family.
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2.3 Cremona Transformations

To compute the effect of a Cremona transformation it is useful to know about
other (−1)-curves on our surfaces. Each family lies also in the closure of other
families of sextics with nine triple points. For explicit computations one needs
to know the coordinates of the ten triple points. Therefore I use the specific
examples in finite characteristic.

I start with the surface with two (−1)-conics. If I leave out P1, then the
surface has one (−1)-conic, so is of of type (2, 4, 6) with the (−1)-conic the one
determined above. The pencil has to contain the reducible surface L2K1C1

with C1 a cubic surface. In the example one finds an explicit equation for C1.
Leaving out P7 or P8 gives a surface with two (−1)-conics, which a priori can
be of type (2, 2, 8) or (2, 2, 4). The explicit example shows that the first case
occurs. Table 3 contains all the surfaces found in this way, with L

i
planes, K

i

quadric cones, C
i
four-nodal cubics and Q

i
quartics with one triple point and

six nodes. Through each point pass 13 of the 16 surfaces and the reducible
surface in the pencil obtained by leaving out this point is the union of the
other three surfaces.

surface P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

L1 1 1 1 0 0 0 0 0 1 1
L2 0 0 0 1 1 1 0 0 1 1

K1 0 2 1 1 1 1 1 1 1 0
K2 1 0 2 1 1 1 1 1 1 0
K3 2 1 0 1 1 1 1 1 1 0
K4 1 1 1 0 2 1 1 1 0 1
K5 1 1 1 1 0 2 1 1 0 1
K6 1 1 1 2 1 0 1 1 0 1

C1 0 1 2 1 1 1 2 2 1 2
C2 2 0 1 1 1 1 2 2 1 2
C3 1 2 0 1 1 1 2 2 1 2
C4 1 1 1 0 1 2 2 2 2 1
C5 1 1 1 2 0 1 2 2 2 1
C6 1 1 1 1 2 0 2 2 2 1

Q1 2 2 2 2 2 2 0 3 1 1
Q2 2 2 2 2 2 2 3 0 1 1

Table 3: Multiplicities of the (−1)-curves in the case of two planes.

To get with a Cremona transformation again a surface with ten isolated
triple points one has to take the four fundamental points such that no three
lie in a plane. For the surfaces of type (4, 4, 4) there are only a few pos-



330. J. Stevens

sibilities, due to the symmetry in the configuration. One can compute the
strict transform of each of the surfaces in Table 3 using the degree formula
3d − m1 − · · · − m4. The multiplicity of the transformed surface in one of
the four image points is the degree of the exceptional curve, which is itself
the image under a standard plane Cremona transformation of the intersection
curve of the surface with the plane through the three opposite fundamental
points: the new multiplicity m1 is 2d−m2 −m3 −m4.

If one takes P1, P7, P8 and P9 as fundamental points the plane L1 is
transformed in a plane, as is the quadric K3. One again gets a sextic with
two (−1)-conics. The transform of each of the cubics C4, C5, C6 is a quadric
cone not passing through the new P1 and simply through P7, P8 and P9. So
leaving out the new P1 gives a surface of type (4, 4, 4) again.

One gets three (−1)-conics by taking P1, P2, P4 and P7 as fundamental
points. For four (−1)-conics one can take P1, P2, P4 and P5 as fundamental
points.

surface P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

L1 0 0 1 1 1 1 1 0 0 0
L2 1 1 0 0 1 1 0 1 0 0
L3 1 1 1 1 0 0 0 0 1 0
L4 0 0 0 1 0 1 0 1 1 1
L5 0 1 1 0 0 0 1 1 0 1

Q1 2 2 1 1 2 2 2 0 2 3
Q2 2 1 1 2 3 0 2 2 2 2
Q3 2 1 2 0 2 2 2 1 3 2
Q4 2 2 0 2 2 1 3 1 2 2
Q5 3 0 2 1 2 1 2 2 2 2

Table 4: Multiplicities of the (−1)-curves in the case of five planes.

A surface with five (−1)-conics cannot be obtained directly with a re-
ciprocal transformation. Instead I first study the configuration in more de-
tail. Leaving out a point on two planes gives again surfaces of type (2, 2, 2),
whereas leaving out one of the five points on three planes leads to sextics of
type (2, 2, 8). There are five quartic surfaces Q

i
with a triple point. Table 4

gives the multiplicities of the surfaces involved at the singular points.

A Cremona transformation with fundamental points P1, P5, P7 and P9

leads to the family with three (−1)-conics. This shows that all four families are
related by Cremona transformations (obtained by composition of reciprocal
transformations).
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Some Problems on Lagrangian

Singularities

Duco van Straten

Abstract

Lagrangian varieties are objects of key interest in various areas of math-
ematics. The study of the basic singularities of lagrangian varieties was
initiated by Arnol’d and Givental’ in the 80’s. We give an informal re-
view some basic results, report on some newer developments and pose
some open problems.

1 Definitions and Examples of Lagrangian

Singularities

Consider a 2n-dimensional complex manifold M with a symplectic form
ω ∈ H0(M, Ω2

M
). This means that ω is closed and non-degenerate, thus provid-

ing an isomorphism Θ
M

≈
−→ Ω1

M
. An n-dimensional analytic subspace L ⊂M

is called lagrangian subvariety if ω vanishes on the regular locus L \ Sing(L).
By a lagrangian singularity we will mean the germ (L, 0) ⊂ (M, 0) of a la-
grangian subvariety L ⊂ M at some point 0 ∈ L. There is a natural notion
of isomorphy or equivalence of lagrangian singularities which is induced by
symplectic mappings. A finite map n : Λ→M from an n-dimensional analytic
space Λ is called a lagrangian map if n∗(ω) vanishes on Λ \ Sing(Λ). The im-
age n(Λ) of such a map is a lagrangian variety. Many examples of lagrangian
singularities are constructed in this way.1 By the theorem of Darboux, one
can introduce local coordinates q1, . . . , qn

, p1, . . . , pn
on M such that

ω =
n

∑

i=1

dp
i
∧ dq

i
.

1991 Mathematics Subject Classification. 14B05, 14B12, 58F05, 32S40, 32S60

Key words. Lagrangian singularities
1At some places the names lagrangian singularity and lagrangian map are used to denote

quite different notions.
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So each lagrangian singularity can be considered as sitting in the standard
symplectic space

(M, ω) = (C2n

,

n
∑

i=1

dp
i
∧ dq

i
).

For notational convenience we will follow in this paper the practice, com-
mon in singularity theory, of not always distinguishing between germs and
representatives of them and write often L rather than (L, 0).

Example 1.1. Consider M = C2 with coordinates p, q and ω = dp ∧ dq. Be-
cause the restriction of a two form to the smooth part of a curve is zero
for dimensional reasons, any plane curve singularity C is automatically a
lagrangian singularity. 2

Nevertheless, lagrangian singularity theory is not the same as ordinary singu-
larity theory, as the notion of isomorphy is not the usual one: in lagrangian
singularity theory we only allow coordinate transformations that preserve the
volume form ω. Let ˜C → C be the normalisation of the curve singularity C.
The composition with the inclusion in the plane is a lagrangian map ˜C → C2

with image C.

Example 1.2. Consider M = C4 = {(q1, q2, p1, p2)} and let ω = dp1 ∧ dq1 +
dp2 ∧ dq2. The map

n : C2
−→ C4; (s, t) 7→ (s,−st,

1

3
t
3
,
1

2
t
2) = (q1, q2, p1, p2)

is lagrangian, as one computes that n
∗(ω) = 0. The image L is a lagrangian

singularity, called the open Whitney umbrella [12], as it maps by forgetting
the p1-coordinate to the familiar Whitney umbrella in C3 = {(q1, q2, p2)},
given by the equation q2

2
− 2p2q

2

1
= 0.

2But notice that ω does not restrict to zero as a Kähler form on C.
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L has an isolated singular point and the normalisation is C2. Hence L is
not normal and not Cohen-Macaulay. The open umbrella is the simplest la-
grangian corank one singularity. For any function f(t) the map

(s, t) 7→ (s,−st,

∫

tf
′(t)dt, f(t))

is lagrangian.

Example 1.3. Consider the set

L := {(a, b, c, e) | f := x
5 +ax

3 +bx
2 +cx+e has a root of multiplicity ≥ 3}.

Any f ∈ L is of the form (x− u)3(x2 + 3ux + v), hence L is the image of the
mapping

n : C2
−→ C4; (u, v) 7→ (v − 6u2

, 8u3
− 3uv, 3u2

v − 3u4
,−u

3
v) = (a, b, c, e).

One computes n
∗(ω) = 0, where ω = 3da∧de+dc∧db, hence L is a lagrangian

singularity and is called the open swallowtail [1]; taking the derivative f 7→ f ′

maps L to the ordinary swallowtail in (a, b, c)-space. As a polynomial of degree
5 can have only one root of multiplicity 3, the self-intersection of the ordinary
swallowtail gets removed in L, whence the name.

Consider the parameter space M = {(a1, a2, . . . , a2k
)} of odd degree polyno-

mials f = x2k+1+a1x
2k−1+ . . .+a2k

with root sum zero. The open swallowtail
in M is the set

L := {(a1, a2, . . . , a2k
) ∈M | f has a root of multiplicity ≥ k + 1}

It is lagrangian with respect to a naturally defined symplectic form on M ,
[11]. This variety turned up in the earliest researches of Hilbert on invariant
theory, as L can be identified with the set of instable points for the action
of SL2 on binary forms. Givental’ [13] showed that open swallowtails are
Cohen-Macaulay.

Example 1.4. Consider n : C2
→ C4, (u, v) 7→ (u3

, u
2
v, uv

2
, v

3) = (x, y, z, t).
As d(u3) ∧ d(v3) = 3d(u2

v) ∧ d(uv
2), the mapping n is a lagrangian map for

ω := dx ∧ dt− 3dy ∧ dz. The image L is the quotient singularity C2
/(Z/3),

isomorphic to the cone of the rational normal curve of degree three. Hence
L is a normal lagrangian surface singularity. I learned this example from P.
Seidel.
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Examples 1.5. Natural sources of examples of lagrangian singularities in-
clude conormal varieties and fibres of completely integrable Hamiltonian sys-

tems. Lagrangian varieties play an important role in the theory of Frobe-

nius manifolds and more generally, F -manifolds, [13] and [18]. The general
method for constructing lagrangian singularities is by the use of generat-

ing functions: consider a family f : X × B → C of functions of variables
x = (x1, . . . , xk

), parametrised by variables q = (q1, q2, . . . , qn
). The critical

space C := {(x, q) | ∂
x
f(x, q) = 0} is mapped via (x, q) 7→ (∂

q
f(x, q), q) to the

cotangent space T ∗
B = {(p, q)}, which has a natural symplectic form ω. The

image is a lagrangian subvariety L ⊂ T ∗
B, which can also be seen as the im-

age of the differential of a multi-valued function on B, whose graph in B × C

is the set of critical values {(q, f(x, q)) | (x, q) ∈ C}, called the front of L. But
this is not the place to explain any of these things in more detail; the reder
should consult [2].

2 Algebraic and Geometric Aspects

The symplectic structure of M gives rise to a Poisson bracket {−,−} : O
M
×

O
M
−→ O

M
which is determined by the equation

df ∧ dg ∧ ω
n−1 = {f, g}ω

n

.

The main features of the Poisson bracket are

1. {−,−} is skew-symmetric:

{f, g} = −{g, f}.

2. {f,−} is a derivation:

{f, g · h} = {f, g}h + {f, h}g.

The vector field {f,−} is called the Hamiltonian vector field associated to f .

3. {−,−} satisfies the Jacobi-identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

The Poisson bracket gives rise to a bracket on the local ring O := O(M,0)

which in local Darboux-coordinates is given as

{f, g} =

n
∑

i=1

(∂
pi

f∂
qi
g − ∂

qi
f∂

pi
g)

The vanishing ideal I ⊂ O of a lagrangian singularity is characterised by the
following properties:
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1. I is an involutive ideal, that is, {I, I} ⊂ I.

2. I is a radical ideal3,
√

I = I.

3. dim(O/I) = 1

2
dimO.

Example 2.1. (see [23], p.30) Consider the ideal generated by

f1 = xz +
3

2
yt, f2 = x

2
−

9

4
y

2
z, f3 = yz

2 +
2

3
xt, f4 = z

3
− t

2
,

which can be checked, for example using Singular [16], to define a reduced
surface singularity L ⊂ C4. Let ω = dx ∧ dz + dy ∧ dt. The Poisson brackets
are

{f1, f2} = −2f2, {f1, f3} =
1

2
f3, {f1, f4} = 3f4,

{f2, f3} = yf1, {f2, f4} = 6zf1, {f3, f4} = 0 .

Hence, L is a lagrangian singularity, which in fact is just the open Whitney
umbrella.

If I is an involutive ideal, then it follows from the derivative property that

{I
p

, I
q

} ⊂ I
p+q−1

.

From this it follows that the Poisson bracket descends to various brackets on
quotients: most important for us are

I/I
2
×O/I −→ O/I, I/I

2
× I/I

2
−→ I/I

2
.

If f ∈ I then {f,−} is a derivation of O/I. If f ∈ I
2, then this derivation is

zero, so the first bracket is equivalent to the O-linear map

λ : I/I2
−→ Der(O/I,O/I), f 7−→ {f,−},

which I call the fundamental map. Geometrically, this expresses the fact that
the Hamiltonian vector field is tangent to the variety defined by I. On a
smooth point of a lagrangian singularity the map λ is an isomorphism which
identifies the conormal space to L with its tangent space.

A central problem in the theory of lagrangian singularities is certainly to
determine which singularities do admit a lagrangian embedding in symplectic
space. Obviously, the lagrangian condition puts very strong conditions.

3A radical involutive ideal I defines a coisotropic subvariety, but, as remarked by C.

Hertling, any germ can appear as locus of an involutive ideal: for any ideal J the ideal

I = J2 is involutive because by the derivation property

{J2, J2} ⊂ J{J, J2} ⊂ J · J{J, J} ⊂ J2.



338. D. van Straten

Definition 2.2. Let L ⊂M be lagrangian. We put

S
k
(L) := {q ∈ L | embdim(L, q) = 2n− k}

Here embdim(L, q) denotes the embedding dimension of L at q.

Proposition 2.3. At a point q ∈ Sk
(L), k > 0, the germ (L, q) is of the form

(L′
, 0)× (C, 0) where (L′

, 0) is lagrangian singularity.

The reason is the following: a smooth hypersurface containing (L, q) gives
a Hamiltonian flow that is non-vanishing at q, hence gives (L, q) a product
structure. The space of integral curves is embedded as a lagrangian singularity
in the Hamiltonian reduction of (M, q).

Let us mention some trivial consequences for lagrangian surface singu-
larities in M = C4.

Corollary 2.4. At a point of embedding dimension three, a lagrangian surface

must have the form (C, 0) × (C, 0), where (C, 0) is a germ of a plane curve

singularity. An isolated singular point must have embedding dimension four.

The simplest normal surface singularities in C4 are the rational triple points,
which were classified by M. Artin [3] and equations were given by G. Tjurina
[27]. The cone over the rational normal curve of degree three is the simplest
of these. The reducible lagrangian singularity given by the ideal

(q1p1, q1q2, p2q2) = (q1, p2) ∩ (q1, q2) ∩ (q2, p1)

consists of three planes and can be considered as the limit of the simplest
series of triple points.

Problem 2.5. Do all rational triple points admit a realisation as a lagrangian
singularity?

As the open Whitney umbrella shows, there exist interesting examples of
non-Cohen-Macaulay isolated lagrangian singularities. Consider the mapping

n : C2
−→ C4

, (u, v) 7−→ (u2
, v

2
, uv

3
, u

3
v) = (x, y, z, t).

Its image L = n(C2) is an isolated singularity, lagrangian with respect to the
symplectic form dx ∧ dz + dy ∧ dt, with ideal generated by

f1 = xz − yt, f2 = x
3
y − t

2
, f3 = x

2
y

2
− zt, f4xy

3
− z

2
,

with Poisson brackets

{f1, f2} = −2f2, {f1, f3} = 0, {f1, f4} = 2f4,

{f2, f3} = −x
2
f1, {f2, f4} = −6xyf1, {f3, f4} = −y

2
f1 .

It maps to the surface xy(x + y)2
− w

2 in (x, y, w)-space via w = z + t. I call
L the open double-cone.
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The normalisation ˜L is isomorphic to an A1-singularity and one has δ(L) :=
dimC(O

e

L
/O

L
) = 1. (The function uv = z/y is “missing” from O

L
.) We call

L a δ = 1-realisation of the A1-singularity.

Problem 2.6. Do all rational double points X admit such a δ = 1-realisation
as lagrangian singularity in C4?

Complete intersection singularities are the simplest singularities from the view
point of commutative algebra and those which are isolated (ICIS) are well
studied in singularity theory [19], starting from Gert-Martin Greuel’s classical
paper [14].

Problem 2.7. (C. Hertling [18]) Does there exists a lagrangian isolated ICIS
in C4? Note that this is the same as asking for an isolated Gorenstein la-
grangian singularity.

To put this in perspective, we recall the following simple theorem, which links
up this question with the Zariski-Lipman conjecture.

Theorem 2.8. [25] Let (L, 0) be a lagrangian complete intersection singular-

ity, Σ = Sing(L) its singular locus. If codim(Σ) ≥ 2, then the module Θ
L

of

vector fields on (L, 0) is free.

Proof. For a general lagrangian singularity one has the following basic dia-
gram:

I/I2 d

−→ Ω⊗O
L
−→ Ω1

L
−→ 0

λ ↓ ↓ ↓

0 −→ Θ
L
−→ Θ⊗O

L
−→ N

L
−→ T

1

L
−→ 0

Here I ⊂ O := O(M,0) is the ideal of (L, 0) and O
L

:= O/I. The top row is the
defining exact sequence for the Kähler differentials on L, where we have put
Ω := Ω(M,0). The bottom row is the dual of the top exact sequence, giving the
exact sequence defining the space T 1

L
. Here Θ := Θ(M,0) = HomO(Ω,O). The

vertical maps arise as follows. The symplectic form ω defines an isomorphism
Ω→ Θ which, tensored with O

L
, gives the middle vertical map. The left

vertical map λ is the fundamental map discussed above. It associates to a
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function f vanishing on L its Hamiltonian vector field {f,−} which is tangent
to L. As a result there is an induced map

ρ : Ω1

L
−→ N

L
.

Now the fact that L is lagrangian implies that λ and ρ are isomorphisms on a
smooth point of L. For a reduced complete intersection the conormal module
I/I2 is free and the map d is injective. Hence the snake lemma gives an exact
sequence

0 −→ I/I2 λ

−→ Θ
L
−→Tors(Ω1

L
) −→ 0.

But for a complete intersection with codim(Σ) ≥ 2 one has Tors(Ω1

L
) = 0,[14],

[19]. Hence λ is an isomorphism and in particular, Θ
L

is free.

The Zariski-Lipman conjecture claims that if the module of vector field is free,
then the space is be smooth. This is known to be true if the codim(Σ) ≥ 3, [8]
and in the quasi-homogeneous case, [21]. Another way of putting the result
is as follows: if the Zariski-Lipman conjecture is true, then a non-smooth
lagrangian complete intersection has to be singular in codimension one.

3 Deformations and Rigidity

There is an obvious notion of deformation of a lagrangian singularity L, which
was worked out in [23]: a family over a base S consists of a flat map L → S,
with an isomorphism of the fibre over 0 ∈ S with the given L, and a map
i : L →M

S
= M × S that is “fibre-wise lagrangian”. In this way one obtains

a corresponding deformation functor denoted by DefLag
L
, which satisfies the

Schlessinger conditions on Art if the tangent space DefLag
L
(C[ε]) is finite

dimensional.
There is a nice complex associated with an involutive ideal that was

considered in [23], [24], [9], [10]. It is the standard complex of the Lie-algebroid
I/I2. It has terms C

p

L
:= Hom(∧p(I/I2),O

L
) and the differential

δ : C
p

L
−→ C

p+1

L

is defined by

(δ(φ))(f1, f2, . . . , fp+1) =
∑

1≤s≤p+1

(−1)s

{f
s
, φ(f1, . . . , f̂s

, . . . f
p+1)}

+
∑

1≤s<t≤p+1

(−1)s+t−1
φ({f

s
, f

t
}, f1, . . . , f̂s

, . . . , f̂
t
, . . . , f

p+1).

There is a natural map from the Kähler-deRham complex to this complex

(Ω•
L
, d) −→ (C•

L
, δ)
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which extends the map ρ : Ω1

L
→ N

L
= C

1

L
that appeared above. It is an easy

exercise to establish the following relation between the complex (C•
L
, δ) and

DefLag
L
.

Proposition 3.1. ([24]) DefLag
L
(C[ε]) = H

1(C•
L
).

Example 3.2. Consider the case of a plane curve singularity L = C ⊂ C2,
defined by an equation f = 0. In this case one has N

L
= O

L
and the complex

is identified with the complex

O
L

{f,−}
−→ O

L

which in turn can be identified with the complex

OL

d

−→ ω
L
.

Hence we find H
0(C•

L
) = C and

H
1(C•

L
) ≈ ω

L
/dO

L
,

a vector space that has, according to the formula of Buchweitz and Greuel
[5], the Milnor number of C as dimension. So we find that the lagrangian
deformation space has dimension µ, rather than τ as in the ordinary case.

There is a very beautiful geometrical explanation of this fact, which
uses the theory of the period mapping, [28], [19]. Let us denote by Λ the
semi-universal base for lagrangian deformations and consider an appropriate
representative of a Milnor fibre C

t
, t ∈ Λ, of C. For each homology cycle

γ ∈ H1(Ct
) one can consider the period

∫

γ
pdq, which is equal to the area of

a 2-disc bounded by γ.
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�������������

By moving around t, these integrals can be varied independently and in
this way we get an identification of the lagrangian deformation space near
t with H1(C

t
) = Cµ. The intersection of cycles provides H

1(C
t
) with a skew-

symmetric form, which produces, via this identification, a closed two-form
on Λ. If the curve singularity is irreducible, the intersection-form is non-
degenerate and leads to a symplectic form on Λ. We refer to [28] for more
details and [10] for a partial generalisation.

The following theorem guarantees the finite dimensionality of cohomology in
important situations.
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Definition 3.3. We say L satisfies condition P [24] or is pyramidal [10] if

dim S
k
(L) ≤ k

for all k.

Example 3.4. All examples we gave satisfy condition P . A lagrangian surface
in C4 satisfies condition P if embedding dimension four occurs isolated at
most. Points of embedding dimension three should occur along curves at
most. The total space of a non-trivial one-parameter family of space curve
singularities in C4 would have a one-parameter singular locus of points of
embedding dimension four, hence does not satisfy condition P .

Theorem 3.5. [24] If L satisfies condition P , then dimC(Hp(C•
L
)) < ∞ for

all p.

The mechanism is the principle of propagation of deformations: at points q

where (L, q) exhibits a product structure, the deformed space must exhibit a
similar product structure:

In fact, it is natural to consider a representative L of the germ and consider the
cohomology sheavesHp(C•

L
) on L. If condition P holds, these are constructible

sheaves on L. The following result is useful to establish rigidity for a large
class of examples.

Theorem 3.6. [25] Let L be a (contractible Stein representative of a) la-

grangian singularity satisfying condition P , and let T ⊂ L a closed subset of

L. If

1. H
1

T
(δO

L
) = 0,

2. H
0(L \ T,H

1(C•
L
)) = 0,

then L is rigid.
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The sheaf δO
L

sits in an exact sequence 0→ C
L
→ O

L
→ δO

L
→ 0, so from

the long exact cohomology sequence

· · · −→ H
1

T
(O

L
) −→ H

1

T
(δO

L
) −→ H

2

T
(C

L
) −→ · · ·

we see that H1

T
(δO

L
) has a part that is related to the depth of L along T

and a part that is purely topological. The other group H0(L \ T,H
1(C•

L
)) of

sections over L \ T of the constructible sheaf H1(C•
L
) involves monodromy

data and is rather subtle. For example, for the open swallowtail L the sheaf
H

1(C•
L
) is a rank two local system on the smooth part of the singular locus,

and can be checked to have no sections over Sing(L) \ {0}, [23]. From this
result and the theorem one can deduce the rigidity of all open swallowtails
and many other singularities as well, [25].

Problem 3.7. Do there exist lagrangian singularities with obstructed defor-
mations? I think the answer must be yes, but due to the non-O-linearity of the
deformation problem, computations are quite difficult. Part of the problem is
that H2(C•

L
) is not the correct obstruction space for the deformation theory.

In any case, it would be good to have more explicit non-trivial examples of
lagrangian deformations.

Problem 3.8. Maybe a more natural viewpoint is to consider O
L

as a special
type of O-module rather than a ring. In case L is a complete intersection, O

L

is resolved by the Kozsul-complex from which it follows that

C
p

L
= Ext

p

O(O
L
,O

L
)

and there were differential δ : C
p

L
−→ C

p+1

L
. Now one should try to define, in

the general case, differentials

δ : Ext
p

O(O
L
,O

L
) −→ Ext

p+1

O (O
L
,O

L
)

that generalise the complete intersection case.

4 The δ-constant Stratum

Let us consider a plane curve singularity C and let n : ˜C → C be the normal-
isation of C. The δ-invariant of C is the number δ(C) := dim(O

e

C
/O

C
) and

is equal to the number of double points that appear in a generic deformation
of the map n. The deformation space of this normalisation map Def( ˜C → C)
has a natural map to the deformation space Def(C) of the curve. The image

Im
(

Def( ˜C → C) −→ Def(C)
)

= B
δ

⊂ Def(C)
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consists of those deformations of C for which the normalisation map can
be lifted. It is a classical theorem of Teissier [26], that Bδ is exactly the δ-
constant stratum of C, that is, the closure of those parameter values t for
which the fibre C

t
has exactly δ double points as singularities. Consequently,

it has codimension equal to δ.

Now suppose that the plane curve singularity C is irreducible. As ex-
plained above, the lagrangian deformation space Λ = DefLag(C) has di-
mension µ = 2δ and carries the structure of a symplectic manifold. Let
Lδ := π

−1(Bδ) ⊂ Λ be the preimage of the δ constant deformation, where
π : Λ→ Def(C) is the map that forgets the 2-form dp ∧ dq. It is known that
L is lagrangian with respect to the symplectic form defined above. This can
be understood as follows: a curve C

t
with δ double points arises from con-

traction of δ disjoint homology cycles which consequently span a lagrangian
subspace in the cohomology, [28]

Problem 4.1. What is the depth of Bδ or L
δ? Are they Cohen-Macaulay?

If yes, the rigidity theorem of [25] quoted above could be applied to conclude
the rigidity of Lδ in the lagrangian sense.

There is a mysterious relation between the δ-constant stratum and torsion-
free modules on C. Let R = O

C
be the local ring of C and ˜R = O

e

C
the local

ring of the normalisation. Any torsion-free R-module M is isomorphic to a
unique R-module sitting between ˜R and the conductor c := Ann( ˜R/R)

c ⊂M ⊂ ˜R

such that dimC(M/c) = dim( ˜R/M) = δ. Hence, M determines and is uniquely

determined by a δ-dimensional subspace M/c ⊂ ˜R/c of dimension 2δ. The
space

RGP (C) := {V ∈ Grass(δ, ˜R/c) | V is an R-module}

considered by Rego [22] and by Greuel and Pfister [15].

One has:

Theorem 4.2. (Rego [22]) RGP (C) is homeomorphic to JC.

Here JC is the (highly singular) compactified jacobian of a rational curve with
a unique singular point isomorphic to C.

Theorem 4.3. (Göttsche-Fantechi-van Straten [7])

χ(JC) = mult(Bδ)
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Here χ denotes the topological Euler-characteristic.
I would like to understand this relation between these two seemingly

unrelated objects much better. For example, is there a way to read off, not
only the Euler-characteristic, but even all the betti numbers

b
i
(C) := dim H

i(RGP (C))

from the geometry δ-constant stratum?

Let me use this opportunity to make some rather wild conjectures.

Conjecture 4.4. Let C be an irreducible curve singularity. Then the space
RGP (C) has only cohomology in even dimensions: b2i+1 = 0.

There is some support for this from computations of T. Warmt [29] and in
particular J. Piontkovski [20], who showed this to be the case for all irreducible
quasi-homogeneous singularities x

p + y
q = 0 and for some series of cases with

two Puiseux-exponents. These results depend on finding a cell-decomposition
for RGP (C).

Example 4.5. Let us take a look at the A2-singularity. The space JC can
be identified with the cuspidal cubic in P2, which indeed is homeomorphic
to RGP (C) = P1. Hence χ(RGP (C)) = 2. Consider the versal deformation
{y2 = x

3 +ax+ b} of the A2-singularity. The δ-constant stratum is a cuspidal
curve {27b2 + 4a3 = 0} in the a, b-plane, which has indeed multiplicity two.

One has
b0(A2) = b2(A2) = 1.

In the real geometry of the versal base we can see a difference between the
two intersection points with the transversal T = {a = const < 0}: one of the
intersection points correspond to a nodal curve with two real branches, the
other to one with an isolated point. This generalises to other simple curve
singularities. For A2k

one has b2i
(A2k

) = 1 for i = 0, 1, . . . , k and one can find
a k-dimensional transversal T that intersects the δ-constant stratum in k real
points that correspond to curves with 0, 1, . . . , k− 1 isolated A1 singularities.
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Intersection with transversal in A6-case

For E6 one has (see e.g. [29])

b0 = b2 = 1, b4 = 2, b6 = 1

and one finds a corresponding transversal:

Conjecture 4.6. Let C be a real irreducible curve singularity. Then there
exists a δ-dimensional transversal T that intersects L

δ in mult(Lδ) real points.
(I call such transversals good.) I do not have much evidence for this conjecture,
but it is true for the irreducible simple curve singularities.

Conjecture 4.7. The Poincaré-polynomial of RGP (C) is given by

∑

i

dim H
2i(RGP (C))ti =

∑

p∈L
δ∩T

t
ip

where T is a good transversal and i
p

is the number of real isolated A1-point
of the corresponding fibre.

There is a way to formulate this purely in terms of the symplectic geometry
of Lδ

⊂ Λ. Let us recall the definition of the Maslov index (see e.g. [17])

µ(L1, L2, L3) ∈ Z

of three lagrangian subspaces L1, L2, L3 in a real symplectic vector space.
It can be defined as the signature of the quadratic form q on the subspace
W := (L1 + L2) ∩ L3 defined by the formula q(z) := ω(x, y), where one writes
z = x+y, with x ∈ L1 and y ∈ L2. The Maslov index is totally anti-symmetric
in its arguments and gives a purely lagrangian definition for the Morse index

of a non-degenerate critical point of a function.
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H

P

Q
µQ = −1

µP = 1

TP L

TQL

T

Conjecture 4.8.

2i
p

= δ(C) + µ(T, H, T
p
L) .

(Here one has to use the flat structure on the semi-universal base Λ to shift
the linear spaces T and H in T0Λ to other tangent spaces T

p
Λ.)
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Topology, Geometry, and Equations of

Normal Surface Singularities

Jonathan Wahl

To Gert-Martin Greuel on his sixtieth

Abstract

In continuing joint work with Walter Neumann, we consider the rela-
tionship between three different points of view in describing a (germ
of a) complex normal surface singularity. The explicit equations of
a singularity allow one to talk about hypersurfaces, complete inter-
sections, weighted homogeneity, Hilbert function, etc. The geometry
of the singularity could involve analytic aspects of a good resolution,
or existence and properties of Milnor fibres; one speaks of geometric
genus, Milnor number, rational singularities, the Gorenstein and Q-
Gorenstein properties, etc. The topology of the singularity means the
description of its link, or equivalently (by a theorem of Neumann) the
configuration of the exceptional curves in a resolution. We survey on-
going work ([15],[16]) with Neumann to study the possible geometry
and equations when the topology of the link is particularly simple, i.e.
the link has no rational homology, or equivalently the exceptional con-
figuration in a resolution is a tree of rational curves. Given such a link,
we ask whether there exist “nice” singularities with this topology. In
our situation, that would ask if the singularity is a quotient of a spe-
cial kind of explicitly given complete intersection (said to be “of splice
type”) by an explicitly given abelian group; on the topological level,
this quotient gives the universal abelian cover of the link. Our major
result gives a topological condition (i.e., a condition on the resolution
graph) that there exists a singularity which arises in this way (and
hence one whose equations can be written “explicitly”). T. Okuma
([18]) has recently proved our Conjecture that rational and minimally
elliptic singularities are all “splice-quotients”. We summarize first the
well-studied case of plane curve singularities, to see what one might

1991 Mathematics Subject Classification. 32S50, 14J17 (secondary: 57N10, 57M25)
Key words. Surface singularity, Gorenstein singularity, rational homology sphere, com-

plete intersection singularity, abelian cover, splice diagram.
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mean about geometry, topology, and equations in that case. There fol-
lows an introductory discussion of normal surface singularities, before
considering our recent work.

The purpose of the article is to survey the main ideas and directions,
rather than to describe details, which can be found in other papers such
as [15].

1 Introduction

To understand what we mean by “topology, geometry, and equations,” we
start with the germ at the origin of a complex irreducible (and reduced)
plane curve singularity C = {f(x, y) = 0} ⊂ C2. Intersecting with a small
3-sphere gives a knot L in the 3-sphere. The embedded topology of the knot
was studied by K. Brauner and E. Kähler in the 1920’s (see [11] for some
details). Their approach resulted in the topological description of the knot by
iterated cabling on a torus knot. The description is given by a sequence of
pairs of positive integers (p

i
, r

i
), the Puiseux pairs, which can be read off a

fractional power series which parametrizes the curve; equivalently, a related
approach produces the sequence of Newton pairs (p

i
, q

i
). A point is that the

“link” of the singularity is intrinsically just a circle, so the “topology” of the
situation should mean the embedded topology (i.e., knot type of L). In this
case, from the equation f(x, y) = 0 one can iteratively read off the Puiseux
pairs using Newton diagrams, and this data describes fully the topology. From
a more geometric point of view, consider an embedded resolution of the curve
by blowing up C2, until the reduced total transform of the curve has normal
crossings. Again, the numerical data described above can be read off from
the configuration of the exceptional curves and their self-intersections, plus
the intersection with the transform of C. Alternatively, one may consider the
value semigroup of the singularity; writing the integral closure of the local
ring of C as C{{t}}, one considers the collection of t-orders of all elements
of the subring. Then this value semigroup is equivalent to the data of the
Puiseux pairs.

What about recovering the equation of the curve from the above data?
Of course, one has equisingular families for which the embedded topology is
constant (i.e., same numerical data), but with analytically distinct individual
curves. So one would ideally like to write down every plane curve singularity
with given topological type. There are several ways to do this. For instance, in
the Appendix to Zariski’s book ([23]), B. Teissier considers a monomial curve
given by generators of the value semigroup; this is known to be a complete
intersection, and is weighted homogeneous. The versal deformation is smooth
and also carries a C∗-action; then the deformations of non-negative weight give
all curves with the same value semigroup (though many of these curves are
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now no longer planar). Another approach is to write down the most general
Puiseux series with given Puiseux pairs, as in [23] Chapitre III (cf. also [2],
Appendix to Chapter 1). For one Puiseux pair (p, q) a family containing every
analytic type is given by:

x
p + y

q +
∑

t
ij
x

i

y
j = 0,

the sum over (i, j) such that

i/p + j/q > 1, 0 < i < p− 1, 0 < j < q − 1.

For a reducible plane curve, one must keep track not only of the topological
type of each branch, but the linking numbers as well.

A new and important development in the study of curves appeared in the
use of the splice diagrams of Siebenmann, by D. Eisenbud and W. Neumann
[2]. These will be discussed below to study surface singularities. For this and
other topics in the topology of plane curve singularities, we refer again to [11].

The moral for us is that at least for irreducible plane curve singularities,
we know how to recover all the relevant (embedded) topological data from
the equation, or a resolution, or the value semigroup; we can tell when a
set of data comes from a singularity; and from the data we can write down
equations of all plane curves of that topological type.

2 The Basics of Normal Surface Singularities

Working up a dimension from the case of curves, consider now the germ at the
origin of an an isolated hypersurface singularity Y = {f(x, y, z) = 0} ⊂ C3.
The link Σ of the singularity is the intersection with a small 5-sphere centered
at the origin. Σ is a compact connected oriented 3-manifold, knotted somehow
in S5. The local topology of the pair (Y, C3) is given by the topological cone
over (Σ, S5); in particular, Y is a topological manifold at the origin iff Σ
is homeomorphic to the 3-sphere. As for knotting in the 5-sphere, one has
(via the map f/|f |) the Milnor fibration; the complement of Σ in S

5 fibres
over the circle, and the fibres are 4-manifolds with boundary Σ and with
homology only in the middle dimension. The rank of this second homology
group, called the Milnor number µ, is known to be computable as the colength
of the Jacobian ideal (f

x
, f

y
, f

z
) in C[x, y, z]. This story is described in the

classical book of Milnor [7].
The whole subject of the topology of normal surface singularities really

began with an important discovery by D. Mumford in 1960. He showed that
if the link Σ is simply-connected, then not only is it the 3-sphere (as the
Poincaré Conjecture asserts), but it is unknotted in S5, and in fact the origin is



354. J. Wahl

a non-singular point. Mumford’s argument works not only in the hypersurface
case. Suppose one has a germ of a normal surface singularity (from now on:
NSS) (Y, 0) ⊂ (Cn

, 0), and one considers the intersection with a small sphere
Σ = Y ∩ S2n−1. The theorem asserts that if Σ is simply-connected, then Y is
smooth at 0. Therefore, unlike in the case of curves, for a NSS the topology
of the link can give you a huge amount of information about the singularity;
and in the simply connected case, it tells you everything about the geometry
of the point. So, from now on, by the topology of a NSS we shall mean simply
the topological type of the 3-manifold Σ.

The natural way to see the topology of a NSS (Y, 0) is via a “good”
resolution π : (Ỹ , E) → (Y, 0). Thus, Ỹ is smooth, π is proper and maps
Ỹ − E isomorphically onto Y − {0}, and E = π−1(0) is a divisor consisting
of smooth projective curves E

i
, intersecting transversally (there is in fact a

minimal good resolution, in an obvious sense). One can associate to E in the
usual way the weighted resolution dual graph Γ: each irreducible component
E

i
of E gives a vertex, intersection points give edges of the graph, and each

vertex is weighted by the degree of the normal bundle of the corresponding
irreducible curve. In addition, the graph Γ is decorated at each vertex with
the genus of the corresponding curve. The link Σ can be reconstructed from Γ
(it is a graph manifold); this is because Σ may be viewed as the boundary of
a tubular neighborhood of E on the smooth surface Ỹ . A critical fact, noted
originally by P. DuVal, is that the intersection matrix (E

i
· E

j
) is negative-

definite. We conclude that the first betti number of Σ equals the number of
cycles in the graph plus twice the sum of the genera of all the E

i
.

If Σ is simply connected, then a fortiori H1(Σ; Q) = 0, i.e., Σ is a rational

homology sphere (which we denote by QHS.) Thus, E is a tree of smooth
rational curves. Mumford shows in this case how to compute the fundamental
group in terms of the loops surrounding the exceptional components in Ỹ .
One must use simple connectivity to show that E can be contracted to a
smooth point.

Mumford’s method soon led to some generalizations. If π1(Σ) is finite,
then the singularity itself is a quotient C2

/G, where G ⊂ GL(2, C) is a finite
subgroup containing no pseudo-reflections. It also turns out that when π1(Σ)
is solvable, one is in a very rigid (and well-understood) situation. But in
analogy with the case of curves (and thus, e.g., of singularities defined by
zn = f(x, y)), one expects that rarely will Σ by itself determine the full
analytic type of a singularity. In fact, H. Laufer ([4]), following some earlier
results of G. Tjurina, gives a complete list of resolution dual graphs which
have a unique analytic representative (he calls such singularities taut); they
are all rational or minimally elliptic (see below for definitions).

One should mention that work of H. Grauert shows that every negative-
definite weighted dual graph (with the genera included) does indeed arise



Topology, Geometry, and Equations of Surface Singularities 355.

from resolving some NSS (Y, 0). One pastes together analytically a smooth
surface with the desired curve configuration, and proves that you can blow-
down the curve configuration to a point, necessarily on a normal analytic
surface. (A general result of Hironaka proves that isolated analytic singulari-
ties are algebraic.) Of course, this purely existential result gives no indication
whether such a singularity could have a nice property, like being a hypersur-
face or complete intersection (other than an obvious numerical condition that
allows for a “canonical divisor” to exist — see below). An important result
of W.Neumann [9] also shows that the homeomorphism type of Σ uniquely
determines the graph Γ of the minimal good resolution (with the well-known
exceptions of cyclic quotient singularities and “cusp” singularities, where ori-
entation must be taken into account). The bottom line is that the topology
of NSS’s is reflected exactly by the dual graphs Γ.

So, a natural question is what statements can be made about the (many)
singularities with given topology. One would not mind if the situation were
similar to that of equisingularity for plane curves, i.e., if all such analytic
types fit into nice topologically trivial (and geometrically similar) families.
Unfortunately, that is not the case in general. For instance, recall that a germ
(Y, 0) is called Gorenstein if there exists a nowhere-0 holomorphic 2-form ω on
Y −{0} (and hence on Ỹ −E). (There is also the traditional purely algebraic
definition in terms of the local ring.) Such an ω extends meromorphically
over E, hence gives rise to a “canonical divisor”K, an integral combination of
the exceptional curves. Complete intersections are Gorenstein, as are quotient
singularities C2

/G as above if and only if G ⊂ SL(2, C). For a dual graph
Γ to come from a Gorenstein singularity, it is necessary that there exist an
integral divisor K satisfying the adjunction rules

K · E
i
+ E

i
· E

i
= 2g(E

i
)− 2

for all i; we can call such a graph numerically Gorenstein. A key result of
Laufer [5] shows that for any graph which does not correspond to a ra-
tional double point or minimally elliptic singularity, there always exists a
non-Gorenstein singularity with that graph. So, if you consider the link of
any hypersurface singularity in C3 which is not rational or minimally elliptic
(e.g., has multiplicity at least 4), then there exists a non-Gorenstein singular-
ity with the same link. It is completely unknown if a numerically Gorenstein
graph always arises from a Gorenstein singularity, even when Γ is a rational
tree.

Now, some non-Gorenstein singularities are still quite pleasant. We call
a singularity (Y, 0) Q-Gorenstein if the canonical line bundle on Y − {0}
has finite order, i.e. some r-th tensor power has a nowhere-0 section. By
taking cyclic covers, one sees equivalently that Y is a quotient of a Gorenstein
singularity by a finite abelian group. For instance, all rational singularities
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are Q-Gorenstein. One fully expects, as a generalization to Laufer’s result
above, that for any graph which is not rational or minimally elliptic, there
exist non-Q -Gorenstein representatives. (However, we have not seen a proof
of this statement.)

Finally, to illustrate how very different singularities can have the same
link, consider the Brieskorn singularities

V (p, q, r) = {xp + y
q + z

r = 0} ⊂ C3
,

and their links Σ(p, q, r). Then Σ(3, 4, 12) is homeomorphic to Σ(2, 7, 14)
(both have as dual graph a single curve of genus 3, with weight −1). Yet
these singularities have different multiplicities and different Milnor numbers
(66 and 78, respectively). Further, if C is a smooth projective genus 3 curve,
and P ∈ C, then

Y = Spec
⊕

Γ(O
C
(nP ))

has the same link as these last 2, but is Q-Gorenstein iff the degree 0 line
bundle O(K − 4P ) has finite order.

3 Some Cases when Topology Implies Nice

Geometry

By the “geometry” of a singularity (Y, 0), one is interested in analytic is-
sues which go beyond the “mere” topology of the link. Relevant notions in-
clude: embedding dimension and Hilbert function; complete intersection, or
Gorenstein, or Q-Gorenstein; the geometric genus p

g
= dim R

1
π∗OỸ

, where
π : Ỹ → Y is a resolution; nature of the defining equations and their syzy-
gies. Complete intersection singularities have a simply connected Milnor fibre,
and hence a Milnor number µ. By an old formula of Laufer [6], in the com-
plete intersection case one has a relation between these invariants: µ − 12p

g

is an explicit purely topological invariant. As already indicated, topologi-
cally equivalent germs could have very different geometry. But suppose one
has a family Y → T , which has a simultaneous equitopological resolution
Ỹ → Y → T (that is, one has a locally trivial deformation of the exceptional
sets). Then the geometric genus is known to be constant; and quite generally,
a small deformation of a complete intersection (or Gorenstein) singularity
has the same property. On the other hand, in analogy with what is known
from deforming space curves, one can easily have a topologically trivial and
simultaneous resolution family of complete intersection surface singularities
for which the embedding dimension jumps ([8] gives nice examples). Thus, in
the general theory we should not be worried about jumping multiplicity or
embedding dimension in “geometrically nice” families.
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We review the two situations where one knows a great deal about the
geometry of a singularity (Y, 0) just from its topology (i.e., graph Γ). A good
general reference for the following discussion is [21], Chapter 4. Consider
the minimal good resolution (Ỹ , E) → (Y, 0), and exceptional cycles Z =
Σn

i
E

i
. Among all such divisors, there is a minimal non-0 cycle Z

o
with the

property that Z
o
· E

i
≤ 0, all i; this is the fundamental cycle (also known

as the numerical cycle in [21]), which is easily (but not necessarily quickly)
computed. The canonical line bundle K of Ỹ satisfies K · E

i
+ E

i
· E

i
=

2g(E
i
)−2 for every exceptional curve, hence one can make sense of K dotted

with any cycle. In particular, Z
o

and K are computed from the graph.

We say that Y is a rational singularity if Z
o
· (Z

o
+ K) = −2; a basic

theorem says that this condition is equivalent to the vanishing of the geometric
genus (which is a priori an analytic as opposed to topological invariant).
Seminal work of M. Artin and E. Brieskorn, expanded upon by J. Lipman,
shows the multiplicity of a rational Y is m ≡ −Z

o
· Z

o
, and the embedding

dimension is m + 1 (so the Hilbert function is H(n) = mn + 1). Y can be
minimally resolved simply by a sequence of blowing-up the singular points
(which are always themselves rational), and the exceptional divisor is a tree
of smooth rational curves. The local Picard group (=divisor class group) has
finite order. So the canonical line bundle on Y − {0} has finite order, from
which it follows that Y is Q-Gorenstein (though it is Gorenstein only for the
rational double points). It was proved in [22] that Y is defined by quadratic
equations, and all the higher syzygies are “linear” in an appropriate sense.
All finite quotient singularities C2

/G are rational; writing down the defining
equations is a calculation in invariant theory. Up to now, given the graph of
a rational singularity, there is no general method for writing down explicit
equations of a corresponding rational singularity. The best results, due to
De Jong and van Straten [3], show how to do this if the rational graph has
reduced fundamental cycle.

Next, we say Y is minimally elliptic if on the minimal resolution Z
o
≡

−K. These singularities were introduced by H. Laufer in [5], though many
of the results were discovered independently by Miles Reid (in unpublished
notes, but see [21] ). The definition is equivalent to Y being Gorenstein of
geometric genus 1. Except for cones over elliptic curves and “cusp” singular-
ities (whose resolution dual graph is a cycle of smooth rational curves), the
minimal good resolution graph is a rational tree. When m ≡ −Z

o
· Z

o
is 1,2,

or 3, one has a hypersurface of multiplicity 2, 2, or 3 respectively in C3; when
m ≥ 4, m is the multiplicity, the Hilbert function is H(n) = mn. Further, Y

is defined by quadratic equations, with “linear syzygies” except at the last
step [22]. Up to now, there is no general method to write down equations,
given the minimally elliptic resolution graph.

We mentioned above that Laufer’s result, and a presumed generaliza-



358. J. Wahl

tion, would imply that any resolution graph which is neither a rational nor
minimally elliptic graph would arise from at least one non-Q-Gorenstein sin-
gularity. In other words, we should be completely finished with the “nice”
cases where the topology automatically forces some basic facts about the
geometry.

But there is one more situation in which a great deal can be said from
the topology — that is, if one additionally knows that (Y, 0) is weighted
homogeneous (that is, quasi-homogeneous, or admits a good C∗-action). Then
Y = Spec A, where A is a positively graded C-algebra. It follows from early
work of Orlik-Wagreich [19] that (except for cyclic quotient singularities) the
exceptional divisor on the minimal good resolution consists of one central
smooth curve (Proj A), and chains of smooth rational curves emanating from
at least 3 points of this curve. Put another way, consider the weight filtration
{I

n
} of A, where I

n
is the ideal generated by elements of weight ≥ n. Take

the weighted blow-up Z = Proj ⊕ I
n
→ Y = Spec A (the so-called Seifert

partial resolution). Then Z is a normal surface with several cyclic quotient
singularities along its exceptional divisor, which is isomorphic to Proj A.
In particular, (Y, 0) determines the following data: the isomorphism class of
the central curve; its conormal line bundle; the location of the points on
the curve at which Z has a singularity; and the data of the cyclic quotient
singularities at these points. Conversely, it was shown by H. Pinkham [20]
and independently by I. Dolgachev how to write down explicitly the graded
algebra A from this data. In other words, this data uniquely determines the
analytic type of the singularity.

Now suppose we have a weighted homogeneous singularity Y with ra-

tional central curve. Then the data you need to write down Y is numerical,
contained in the graph Γ, except for the (analytically significant) location
of the intersection points on the central rational curve. Such singularities all
have QHS links, are rarely rational singularities. For instance, any Brieskorn
hypersurface V (p, q, r) for which p is relatively prime to qr give such exam-
ples; but if p, q, r ≥ 4, then these are neither rational nor minimally elliptic.
On the other hand, due to the grading, it is not too hard to find the numerical
data that tell you when Y is Gorenstein; and it turns out that such Y are
always Q-Gorenstein. But much more is true; we need to explain first some
general facts.

4 Universal Abelian Covers of Singularities

with QHS Links

There is an alternate way to describe the equations of a weighted homoge-
neous singularity whose link is a QHS. Note that in general if the link Σ of
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a singularity is a QHS, then the first homology H1(Σ; Z) is a finite group
computed directly from Γ; this discriminant group D(Γ) is the cokernel of
the intersection pairing (E

i
· E

j
) (so, the order is the absolute value of the

determinant). The universal abelian covering Σ̃ → Σ is finite, and it is im-
portant to note that it can be realized by a finite map of germs of NSS’s
(X, 0) → (Y, 0), unramified off the singular points. We abuse notation and
refer to the map X → Y as the universal abelian covering of the singularity,
or the UAC.

Recall that a Brieskorn complete intersection (or BCI) is a singularity
V (p1, . . . , pt

) defined by

t
∑

j=1

a
ij
z

pj

j
= 0, i = 1, . . . , t− 2 ,

where pi
≥ 2 and every maximal minor of the matrix (a

ij
) has full rank.

Theorem 4.1. [10] Let (Y, 0) be a weighted homogeneous singularity whose

link is a QHS. Then the UAC of (X, 0) is a BCI as above. The p
i

and

the diagonal action of the discriminant group on the ambient variables are

explicitly computed from the graph Γ of Y .

Of course, the values of the a
ij

depend on the analytic class of t points on
the central P1. Note that the Theorem allows one to write down “explicit”
equations for the singularity (Y, 0). First, write down monomials generat-
ing the ring of invariants for the action of the discriminant group acting on
C[z1, · · · , zt

]; then, mod out by relations on these monomials; finally, divide by
relations which follow from the BCI equations. While not as direct a method
for writing equations as the aforementioned Pinkham-Dolgachev approach,
this result actually generalizes to many other cases.

Example 4.2. The E7 singularity (a rational double point) has graph Γ
which is the Dynkin diagram for E7. Its discriminant group has order 2,
and the UAC is V (2, 3, 4), which is the E6 singularity; the group action on
x2+y

3+z
4 = 0 is given by (x, y, z) 7→ (−x, y,−z). So the quotient is generated

by the invariants A = x2
, B = xz, C = z

2
, D = y, with equations AC−B

2 = 0
from the group action, and A + D3 + C

2 = 0 from the equation. This yields
the familiar (non-Brieskorn) equation for E7:

B
2 + C(C2 + D

3) = 0.

There are two striking aspects of Theorem 4.1. First, the UAC turns out to
be not only Gorenstein (which is clear), but even a complete intersection.
Second, it is a complete intersection of very special type — a BCI (which
need not have QHS link).
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For many years we wondered what is the most general natural context in
which to view the previous theorem. It thus became clear one should study
the UAC of singularities (Y, 0) with QHS link, but whose graph Γ has more
than one node (unlike in the weighted homogenous case). If the UAC were to
be a complete intersection, then Y must be Q-Gorenstein. But what general-
ization of BCI would work as UAC’s for a wide class of Y ’s, such as rational
singularities?

One considers first the case that the link is a ZHS, since then the UAC
of the singularity is itself. This was the topic of several papers with Neumann
[12, 16]. The discovery of the Casson invariant λ(Σ) of a three-dimensional
ZHS around 1986 and its subsequent calculation for certain examples led to
the Conjecture of Neumann-Wahl:

Casson Invariant Conjecture. [12] For a complete intersection singularity
with ZHS link, the Casson invariant is one-eighth the signature of the Milnor
fibre.

Since the Casson invariant is topological, such a result would imply that for
a complete intersection (a very strong geometric property), the ZHS topol-
ogy determines the signature of the Milnor fibre (and hence, by well-known
formulae, also the Milnor number and geometric genus). Implicit in the Con-
jecture (and what makes it provocative) is the prediction that the Milnor
fibre itself is somehow canonically associated to the link (perhaps with some
extra structure).

In spite of some progress on this Conjecture [16], and counterexamples
showing it does not generalize to links of Gorenstein singularities (which might
not even be smoothable) [8], the question remains open. However, it did raise
the problem of trying to write down explicit examples of complete intersection
singularities with ZHS links, beyond the BCI’s V (p1, . . . , pt

) (where the p
i

are pairwise relatively prime). This ultimately led to the discovery of complete

intersections of splice type, which play a role in the general problem.

5 Splice Diagrams and Complete Intersec-

tions of Splice Type — ZHS case

The usual topological description of a singularity link is via plumbing accord-
ing to the resolution dual graph Γ. But when the link is a ZHS (i.e., the
intersection matrix is unimodular), there is another topological construction,
from a different kind of graph, which can be computed from Γ. The following
discussion is largely taken from [16], itself depending heavily upon [2].

Suppose first that K
i

is a knot in a ZHS Σ
i
, i = 1, 2. Then one may

“splice” the two three-manifolds together along the knots to form a new ZHS:
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remove from each Σ
i
a tubular neighborhood of K

i
, and then paste together

along the boundaries (which are tori), but switching the roles of meridian and
longitude. (Of course, orientation needs to be handled carefully).

A splice diagram is a finite tree with vertices only of valency 1 (“leaves”)
or ≥ 3 (“nodes”) and with a collection of integer weights at each node, asso-
ciated to the edges departing the node. The following is an example:

◦ ◦

◦

2

3

◦

5

2
117

◦ ◦

For an edge connecting two nodes in a splice diagram the edge determinant is
the product of the two weights on the edge minus the product of the weights
adjacent to the edge. Thus, in the above example, the one edge connecting two
nodes has edge determinant 77−60 = 17. This example is supposed to repre-
sent the result of splicing together the Brieskorn homology spheres Σ(2, 3, 7)
and Σ(2, 5, 11) along the knots obtained by setting the last coordinate equal
to 0 in the defining equations. Each leaf of a splice diagram corresponds to a
knot on the corresponding ZHS.

The splice diagrams that classify integral homology sphere singularity
links satisfy the following conditions on their weights:

• the weights around a node are positive and pairwise coprime;

• the weight on an edge ending in a leaf is > 1;

• all edge determinants are positive.

Theorem 5.1 ([2]). The integral homology spheres that are singularity links

are in one-one correspondence with splice diagrams satisfying the above con-

ditions.

The splice diagram and resolution diagram for the singularity determine each
other uniquely, and indicate how to construct the link by splicing or by plumb-
ing. To go from resolution to splice diagram, one collapses all vertices of
valency 2, and uses as weights the absolute value of the intersection matri-
ces of certain subdiagrams. (Computing in the other direction is harder, and
given in [2] or an appendix to [16]). The example above corresponds to the
resolution diagram

−2

◦
−2

◦−1

◦
−17

◦
−1

◦−3

◦
−3

◦
−2

◦

An important point is that the ends of the diagrams (in this ZHS case)
correspond to certain natural isotopy classes of knots in the 3-manifold.
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A surprising early discovery of the Neumann-Wahl collaboration was that
if a singularity link is a ZHS, and a certain condition on Γ is satisfied (the
“semigroup condition”), then one can use the associated splice diagram ∆
to write down explicit equations of a complete intersection singularity, whose
link is what we started with. This works as follows: first, for each pair of
distinct vertices v, v′ of ∆, define the linking number `

vv
′ to be the product of

the weights adjacent to, but not on, the shortest path from v to v ′ (including
weights around each vertex). To each leaf w, assign a variable z

w
. To each

node v, assign a weight `
vw

to the variable z
w
, and assign a weight to v itself

equal to the product of all the weights on the edges adjacent to v. Next, for
each node v and adjacent edge e, choose if possible a monomial M

ve
in the

outer variables whose total weight is the weight of the node v. If the node
v has valency δ

v
, choose δ

v
− 2 equations by equating to 0 some C-linear

combinations of these monomials:
∑

e

a
ie
M

ve
= 0, i = 1, . . . , δ

v
− 2.

Repeating for all nodes, we get a total of t − 2 equations. We require the
coefficients a

ie
of the equations be “generic” in the precise sense that all

maximal minors of the (δ
v
− 2)× δ

v
matrix (a

ie
) have full rank.

Example 5.2. For the ∆ of the example above, we associate variables
z1, . . . , z4 to the leaves as follows:

z1 ◦ ◦ z4

∆ = ◦

2

3

◦

5

2
117

z2 ◦ ◦ z3

At the left node, the weights of the variables turn out to be (in order) 21, 14,
12, 30, and the total weight at the node is 42; so possible monomials for the
left node are z2

1
, z

3

2
, and z3z4. The monomials for the right node are z

5

3
, z

2

4
,

and z1z
4

2
or z

3

1
z2. Thus the system of equations might be

z
2

1
+ z

3

2
+ z3z4 = 0 ,

z5

3
+ z

2

4
+ z1z

4

2
= 0 .

The “semigroup condition” on ∆ (or Γ) is exactly the ability to write down
appropriate monomials at every node in every direction.

Theorem 5.3. Let ∆ be a splice diagram corresponding to a ZHS singularity

link. Suppose ∆ satisfies the semigroup conditions. Then the splice equations

above describe a complete intersection singularity whose link is the ZHS as-

sociated to ∆. Further, each of the t coordinates, when set equal to 0, cuts

out the knot on the link corresponding to the end (“leaf”) of the diagram.
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So, we can summarize by saying that for all these topologies, there exists a
very special kind of complete intersection singularity with the given link. This
notion is a generalization of Brieskorn complete intersection V (p1, · · · , pt

)
already discussed. But in fact we can (and therefore should) generalize the
above construction slightly by allowing one to add higher weight terms to each
equation at each node. We then arrive at the notion of a complete intersection

of splice type, or CIST. The only proof we know of this Theorem is as a special
case of a much more general result, Theorem 6.4 below.

We also note that each node in the splice diagram corresponds to a valua-
tion in the local ring of the CIST. For, the nodes give weights to the variables,
and the nature of the defining equations means that the associated graded
ring is an integral domain (follows from [15], Theorem 2.6). This parallels the
role of the valuation for an irreducible curve, and the weight filtration for a
weighted homogeneous singularity.

The following (Example 3 of [16]) shows that while the embedding dimen-
sion of a CIST is at most the number of ends of ∆, it could be considerably
smaller.

Example 5.4. Let ∆ be the splice diagram:

y ◦
q

z◦
p
′

◦
p
′′
q
′

p

◦
p
′

pq
′′

p
′′

p
′
qr

◦

x ◦

p

w◦

q
′

◦
q
′′

p
′′

v ◦ u◦

The integers p, q, p
′, q

′, p
′′, q

′′, r are ≥ 2 and must satisfy appropriate relative
primeness conditions, as well as edge inequalities

q
′
> p

′
q, q

′′
> p

′′
q
′
, qr > pq

′′
.

Associating variables x, y, z, w, u, v to the leaves in clockwise order starting
from the left as shown, one may write splice equations:

x
p + y

q = z , z
p
′

+ w
q
′

= u , u
p
′′

+ v
q
′′

= x
r

, y + w = v .

These define the hypersurface singularity given by

((xp + y
q)p

′

+ w
q
′

)p
′′

+ (y + w)q
′′

= x
r

.

Given our general earlier warnings about NSS’s, we can ask which of the
analytic types (Y, 0) for a given ZHS topology are so represented. Of course,
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V must be Gorenstein if it is a CIST. But a very natural point of view is
that one should be considering the “algebraic” nature not just of the link,
but the t isotopy classes of knots which are part of the data of the link.
We mentioned above that for a CIST, these knots are cut out by coordinate
functions. Algebraically, this says that in the analytic local ring of the singular
point, there are prime principal ideals which give topologically the knots in
question. A converse statement holds:

Theorem 5.5. Let (Y, 0) be a NSS with ZHS link. Suppose each of the t knots

in the link is represented by the vanishing of some function in the local ring.

Then Y is a CIST; in particular, the link satisfies the semigroup condition.

The method of the proof is as follows: choose an irreducible curve in the local
ring cut out by the function corresponding to one of the knots. The other
functions have a known order of vanishing along the normalization of this
curve, hence contribute to the value semigroup. This subsemigroup, read off
from the splice diagram, is shown to satisfy a certain inequality between its
own δ invariant and the “Milnor number” of the curve itself. Applying now
basic results of Buchweitz-Greuel [1], one proves that the subsemigroup is the
full value semigroup of the curve, and these functions generate the maximal
ideal. (Note that we did not need to assume the Gorenstein property at the
beginning.)

These results clarify greatly the possible nice geometries for a NSS with
given ZHS link; we even know how to write down explicit equations for
singularities whose link satisfies the semigroup condition. On the other hand,
one should keep in mind the following examples and open questions:

1. Does every complete intersection singularity with ZHS link satisfy the
semigroup condition? Is every one a CIST? (This is related to a question
about the Casson invariant.)

2. Does every CIST as above satisfy the Neumann-Wahl Casson Invariant
Conjecture?

3. There exist Gorenstein singularities with ZHS link which do not satisfy
the semigroup condition ([8], 4.5).

4. There exists a Gorenstein singularity, not a complete intersection, whose
link is Σ(2, 13, 31) ([8], 4.6).

The second item above is difficult simply because one knows of no good
inductive way to compute the geometric genus of a complete intersection of
splice type, even though the equations are quite explicit.
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6 Generalized Splice Diagrams and CIST’s

The results of the preceding section say a great deal about possible equations
for a wide class of integral homology sphere links. But from one point of view,
such links are not so common. Specifically, all rational singularities and nearly
all minimally elliptic singularities have rational homology sphere link, but
only a few have ZHS link. In the rational case, the only non-trivial example
is the E8 singularity V (2, 3, 5) (this is a famous theorem of Brieskorn, usually
stated in terms of trivial local divisor class group). Among minimally elliptics,
one has V (2, 3, 7) and V (2, 3, 11) and their positive weight deformations. It
is thus natural to try to extend the previous discussion of CIST’s to say
something about a NSS with QHS link.

Given (Y, 0) with QHS link and diagram Γ, one would like to get hold
of the UAC (X, 0)→ (Y, 0). If X is to be a complete intersection of a special
type, one should try a generalization of the CIST’s of the last section. In that
case, one started with a splice diagram satisfying certain rules, and asked
whether a certain “semigroup” condition was satisfied; then, one could write
down equations of a complete intersection surface singularity, whose topology
was what one wanted.

Let us consider a more general splice diagram ∆, where the weights
around a node are positive, but are no longer required to be pairwise coprime.
(For technical reasons, one should also allow 1 to be a weight on an edge
leading to a leaf.) Then exactly as before, one can associate a variable to each
of the t ends; for each node, assign weights to the variables and the node;
choose (again, if possible) for each node and adjacent edge a monomial in the
outer variables whose weight is that of the node; for each node, take generic (in
a very specific sense) linear combinations of these monomials, giving weighted
homogeneous polynomials for the node’s weights; to each such polynomial,
add terms of higher weight; set all these polynomials equal to 0. In other
words, if the “semigroup” condition is satisfied for a general splice diagram
∆, one can as before produce subschemes X(∆) of Ct. Then a major result
of [15] is

Theorem 6.1. Suppose ∆ is a generalized splice diagram satisfying the semi-

group condition. Then X(∆) has an isolated local complete intersection sur-

face singularity.

These singularities, which we still call CIST’s (complete intersections of splice
type), are the desired generalizations of Brieskorn complete intersections. In
fact, when the splice diagram has one node, an X(∆) is exactly a BCI but
with higher weight terms possibly added to each equation. On the other hand,
it is far from obvious how to prove that X(∆) has an isolated singularity, at
least with the very specific genericity condition we impose on the coefficient
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matrices. This is accomplished in [15] by an induction on the number of nodes.
Starting with a graph Γ representing a QHS, one can produce formally

a generalized splice diagram ∆ by the same procedure as in the ZHS case:
collapse all vertices of valency 2, place certain subdeterminants as weights
along every edge emanating from a node. The differences now are that the
weights around a node need not be pairwise relatively prime if one did not
start with a ZHS; and, the constructed splice diagram has less obvious topo-
logical interpretation than in the earlier case. Further, it is easy to see that
different Γ’s can give rise to the same splice diagrams (this happens already
in the weighted homogeneous case). However, we do have an unpublished re-
sult which indicates one is on the right track (and compares with Neumann’s
Theorem 4.1).

Theorem 6.2. Suppose two QHS links give rise to the same splice diagram.

Then these two links have diffeomorphic universal abelian covers.

Returning to our original singularity (Y, 0), we have produced from the graph
Γ a splice diagram ∆, and from it a class of isolated complete intersection
surface singularities. We hope one of these could be the UAC of Y . But we
need to bring into play the first homology group of the link; this “discriminant
group” is computed from the intersection matrix (E

i
·E

j
), and will be denoted

D(Γ). If E denotes the free abelian group generated by the exceptional divisors
on Ỹ , then the intersection pairing gives an injective map of free Z-modules

E→ E∗ = Hom(E, Z),

whose cokernel is the discriminant group.

Proposition 6.3. Let {E
i
} be the exceptional curves, and {e

i
} ⊂ E∗ be the

dual basis for the intersection pairing, i.e.

e
i
· E

j
= δ

ij
.

Then a faithful diagonal representation of the discriminant group on Ct (the

vector space with basis the ends of the graph) is constructed as follows: e ∈ E∗

acts on the coordinate z
i
by multiplication by the root of unity exp(2πi(e ·e

i
)),

where e
i
is dual basis element corresponding to the end E

i
.

In other words, one has a natural representation of the discriminant group
on the polynomial ring in t variables, the ring from which the CIST’s can
be defined. So, we ought to look for some CIST on which the discriminant
group acts equivariantly, i.e., for which every term of each defining equation
transforms by the same character of the group. The semigroup condition
guaranteed the existence of at least one “admissible” monomial for each node
and adjacent edge; we need to be able to find one that transforms correctly.
This translates easily into a condition on the original graph Γ, which we call
the congruence condition. We can state the main theorem of [15].
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Theorem 6.4. Let Γ be a graph of a QHS link satisfying the semigroup

and congruence conditions, with associated splice diagram ∆. Let X(∆) be

a complete intersection of splice type on which the discriminant group D(Γ)
acts equivariantly. Then

1. D(Γ) acts freely on X(∆) off the singular point at the origin

2. Y ≡ X(∆)/D(Γ) is a germ of a NSS, whose resolution graph is Γ.

3. X(∆)→ Y is the universal abelian covering.

The bottom line is that if we are given a graph Γ satisfying the semigroup and
congruence conditions, then we can “explicitly” write down the equations of a
singularity with that link, in much the same way as discussed in the weighted
homogeneous case following Citex.x. That is, we can write explicit equations
of a complete intersection singularity (the UAC), and an explicit diagonal ac-
tion of the discriminant group on that singularity. To see the actual equations
of the desired singularity, one needs to do (perhaps very complicated) calcula-
tion of monomial invariants for the group action, find generators for the ideal
of relations, and then deduce relations for these invariants which come from
the splice equations. The easy case of Example 4.2 on the E7 singularity as a
quotient of the E6 gives the general idea. We have already mentioned that in
the weighted homogeneous cases, there are faster ways to get equations than
the UAC method of Neumann’s Theorem 4.1.

A singularity Y arising as in the Theorem is called a splice quotient. A
natural question is to ask which singularities are of this type. We know that
weighted homogeneous singularities with QHS link are splice quotients. The-
orem 5.5 gives an analytic necessary and sufficient condition for a singularity
with ZHS link to be a splice quotient. On the other hand, an “equisingular”
deformation of a splice quotient need not be of that type; even if the geomet-
ric genera for the singularities in a family are constant, the same need not be
true for the geometric genera of the UAC’s. An example of this phenomenon
is found in [8].

Nonetheless, we conjectured about 7 years ago that rational and QHS

link minimally elliptic singularities are all splice quotients. (By the time [13]
was written, we had intemperately generalized the conjecture to a point where
it could not be correct, via [8].) The first non-trivial case was verified in [14] for
the “quotient cusps,” a class of log-canonical (and taut) rational singularities,
whose resolution dual graph has 2 nodes:

−2

◦
−2

◦
−e1

◦
−e2

◦
−ek

◦ k ≥ 2, e
i
≥ 2, some e

j
> 2.

−2

◦
−2

◦

Explicit equations for the UAC (which is a “cusp” singularity) and the action
of the discriminant group are given in Section 5 of that paper.
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The motivation for the general conjecture was not only the beauty of
such a result, but because the rational and QHS minimally elliptic singu-
larities possess an important property of splice quotients analogous to that
mentioned in Theorem 5.5 above. Recall that an end-curve on the minimal
good resolution Ỹ is a rational curve that has just one intersection point with
the rest of the exceptional divisor (so that it corresponds to a leaf in the
splice diagram). The following is observed along the way to proving the Main
Theorem above.

Proposition 6.5. Let (Y, 0) be a splice quotient. Then for every end curve

E
i
on Ỹ , there is a function y

i
: Y → C such that the proper transform on Ỹ

of its zero-locus consists of one smooth irreducible curve C
i
, which intersects

E
i
transversally at one point and intersects no other exceptional curve.

Another way to state this property is that for every end-curve, there is a
prime ideal in the analytic local ring of Y whose n

i
-th symbolic power is a

principal ideal (y
i
), where y

i
has the vanishing properties described above

(i.e., its proper transform is n
i
C

i
.) Note that this integer n

i
is the order of

the image of the dual basis element e
i
in the divisor class group.

Now, it is well-known that rational singularities have the “end-curves
property” described in the Proposition; the same is true for QHS link mini-
mally elliptics ([21], p. 112). So, in an attempt to generalize Theorem 5.5 we
have made the following

End-Curves Conjecture1. Suppose (Y, 0) is a NSS with QHS link. Suppose
to every end-curve on the minimal good resolution there exists a function as
in Proposition 6.5. Then Y is a splice quotient.

Note that the assumptions about the end-curves are supposed to imply
the semigroup and congruence conditions on the graph, as well as the Q-
Gorensteinness of the singularity.

This Conjecture is still open; but as we shall see, T. Okuma has recently
proved that rational and minimally elliptic singularities are splice quotients.

7 Okuma’s Theorem and Further Questions

Once we know that a graph Γ of a rational or QHS minimally elliptic sin-
gularity satisfies the semigroup and congruence conditions, then it follows
from Theorem 6.4 that there is at least one such singularity which is a splice
quotient. For Γ with at most two nodes, these two conditions may be checked
directly ([15],Section 11). But T. Okuma has proved in general

1Remark in proof : W. Neumann and the author have recently announced a proof of the
End-Curves Conjecture.
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Proposition 7.1. [18] The graph of a rational or QHS minimally elliptic

singularity satisfies the semigroup and congruence conditions.

Okuma’s method is to give a condition on Γ that turns out to be equivalent
to the semigroup and congruence conditions, and then to deduce this graph-
theoretic property from a well-known stronger property for such rational or
QHS minimally elliptic graphs. Our own version of his result is found in [15],
Section 13.

To get the strongest result, Okuma uses a precise description of the UAC
of a NSS Y with QHS link. Considering the MGR Ỹ → Y , he constructs
a fairly explicit sheaf of algebras on Ỹ whose Spec is a partial resolution of
the UAC, with only cyclic quotient singularities [17]. This is similar to the
Esnault-Viehweg method for constructing cyclic coverings branched along
normal crossings divisors. Using the preceding proposition, and the existence
of appropriate end-curves, Okuma proves our old Conjecture about the UAC.

Theorem 7.2. ([18]) Every rational or QHS minimally elliptic singularity

is a splice quotient. In particular, one may write down explicit equations for

it.

We note that Okuma’s original preprint does not specifically assert this The-
orem in its full strength; one can find an explanation of why he has in fact
obtained this result in [15], Section 13.

At this point, we now know many examples of singularities with QHS

links which are splice quotients — especially, rational, minimally elliptic, and
weighted homogeneous. But there are many examples, even of hypersurface
singularities, which could not be splice quotients. The next challenge is to try
to understand better what is going on in the other cases — is there a nice
theorem out there?

An interesting place to start is with some of the examples in [8]. For
instance, we have found a hypersurface singularity which does not satisfy the
semigroup condition; but nonetheless, the UAC is a complete intersection of
splice type! These and related issues are currently being looked into.
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